CSE491/596 Lecture Mon. Nov. 9: Time and Space Complexity Classes

From the corresponding lecture on Monday of Week 11 in 2018:
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Under log-space reductions, because all languages in L are = :,fg equivalent, the region for
deterministic logspace should really warp into a point. If we could get a notion of "regular reductions" to
suffice for all the NP-completeness reductions we want, we would only need to collapse REG into a
point. As it stands, we can ignore little blemishes to get the big picture. It puts major classes for the
four main complexity measures, viz. DTIME, DSPACE, NTIME, and NSPACE, onto one "landscape"
map.

Before we go into weirdnesses like why there is no "NPSPACE" and why NL shows as closed under
complements whereas NP does not, we must establish the basic "positive knowledge" about which
classes are included in others. We don't have much "negative knowledge" about non-inclusions
between classes of different complexity measures at all. The central mystery is why this knowledge is
so much less than what we know about separations between classes defined for the same complexity
measure. The following theorem shows the yawning exponential gaps in our current best upper
bounds.

Theorem: For any "reasonable” time measure f(11) > 1 + 1 and space measure s(n) > log,n,



DSPACE[s(n)] € NSPACE[s(n)] < DTIME[206(]
DTIME[#(n)] € NTIME[t(n)] € DSPACE[O(t(n))] C---

Proof: The first and third containments are immediate by definition. For the second, let N be an NTM
with some number k of tapes and work alphabet I" that runs in space s(71), and consider any input x to
N, putting 7 = |x| as usual. The notion of “‘reasonable" allows us to lay out in advance s(n) tape cells

ﬁ
that N is allowed to change. Thus any configuration I has the form I = (g, w, ) where g is the current
9

state, w € I represents the current content of the cells N can change, and & gives the head
positions on all tapes, including the location of the input head reading x. Note that I does not need to
give the parts that don't change---if all cells occupied by x are kept constant, w doesn't need to include
any of them. So the total number of different possible IDs we need to consider on input x is at most

1O - ITIF™ - (n+2)(s(n) + 2k — 2)¥1.

Since s(n) > log,(n), |T|*™ is at least 2108201 — 3 50 the third factor does not dominate the second

factor and the whole size is bounded by 296 (The +2 and 2k — 2 allow the heads to occupy blanks
to the left or right of x and the cells they can change, however they are laid out on the tapes; they don't

really matter to the 2°¢™) size estimate.)
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Now we define a directed graph G, withthe IDs I, ], ... as its nodes and the relation I - y | as its



edge relation. Then N accepts x if and only if breadth-first search from the starting ID I(x) finds an
accepting ID (which by "good housekeeping" can be a unique node t = If). Since BFS runs in time
polynomial in the size of the graph, and polynomial-in-2°¢™) still gives 2°¢™) | we obtain a
deterministic algortihm that decides whether x € L(N) in time 2°¢() This proves the second
containment.

In-passing, we note that in the case s(n) = O(logn), DTII\/IE[ZO(S(”))] is just P. Also, the mapping

reduction gn(x) = (G, [o(x), If) is computable in logspace---because we can just treat the code of

any ID I as an O(log n)-sized binary number and so lay out all the edges of G, using just the 6 of the

log
m

fixed NTM N accepting a given language A € NL, we get that GAP is complete for NL under <
reductions.

(1)

The fourth containment is (IMHO) best described as a depth-first search. Given a k-tape NTM N that
runs in time (1), we may suppose N has binary nondeterminism, so that on any input x of length n
there are at most £(n) bits of nondeterminism that N can use. We can organize all the possible
guesses Yy as branches of a binary tree T of depth ¢(11) and allocate t(11) cells to hold the current y we
are trying. Since N(x) cannot possibly use more than kt(n) tape cells, we need only t(n) + kt(n)
space total to do a full transversal of T. We accept x if and only if an accepting branch is found. This

simulation takes roughly 2/ time but it all operates within O(t(1)) space, so
L(N) € DSPACE[O(t(n))].

For example with s(1) = O(log 1) we get



L € NL € P S NP € PSPACE.

This brings us back full-circle to the deterministic space measure, and we can ratchet up to the next
level:
PSPACE € NPSPACE C EXP € NEXP C EXPSPACE.

A reminder again that EXP = DTII\/IE[Z”O(I)], not DTII\/IE[ZO(")], which is called E. We do in fact

have PSPACE = NPSPACE by Savitch's Theorem, which we will prove next week in-tandem with
showing that the language of true quantified Boolean formulas (called TQBF or, confusingly, QBF) is

complete for PSPACE under < };;g reductions. But basically the only multi-link chain of differences
that we know from these classes is

NL ¢ PSPACE ¢ EXPSPACE.

One can put L in place of NL here, and also prepend REG as a fourth proper link, but the main fact is
the two exponential gaps thus-far seemingly needed to climb back around to the deterministic or
nondeterministic space measure. Of final note today is the following theorem.

Immerman-Szelépcsenyi Theorem: For every space measure s(n1) = (2(logn), NSPACE[s(n)] is
closed under complements. In particular, NL = co-NL, and for linear space, NLBA = co-NLBA.

This was proved independently by Neil Immerman and Robert Szelépcsenyi in 1988. The proof is

difficult and skipped here.

[The next lecture will cover the deterministic Time and Space Hierarchy Theorems in-tandem using a technical
lemma from the notes https://cse.buffalo.edu/~regan/cse491596/CSE596inclusions.pdf ]



