
CSE491/596 Lecture Fri. 11/20/20: Relativization and Randomness
 
The most important example of using an oracle Turing machine, IMHO, is the manner in which a 
function  can be computed if we have an oracle for its associated "undergraph" language:f
 

}.L  =  ⟨x, w⟩ :  w ≤  f xf { ( )

 
Here is with respect to the natural ordering of strings---which puts shorter strings before longer ones ≤

and otherwise lists same-length strings in alphabetical order.  But we can also regard  as a numerical f

function  under the natural correspondence of  and , whereupon is just ordinary f :  N  N→ 𝛴*
N ≤

numerical less-than-or-equal.  
 
The method is simply binary search.  You've probably seen the algorithm in some form, but let's view it 
in the oracle machine form.  The one thing we need to start the binary search, on any given  where we x

want to compute , is a quick way to compute a bound  over how big  could be.  For instance, f x( ) Bx f x( )

 can be  where we know  (and where , say).Bx 0m+1 |f x | ≤  m( ) m =  |x|k

 
lo = ; hi = ; 𝜖 Bx

while (hi - lo > 1) {    INV: lo    <  hi≤ f x( )

   mid = a string midway between lo and hi;

   query: is <x,mid> in the oracle language ?Lf

   if (yes) {

      lo = mid; 

   } else {

      hi = mid;

   }

}  //on exit, hi = lo+1 and by INV, lo must equal .f x( )

return lo;

 
Even though there are exponentially many possibilities for  among strings of length  , indeed f x( ) ≤ |x|k

order-of  possibilities where , the binary search needs at most  iterations, each writing a 2n k
n = |x| nk

query of length up to .  Thus the whole thing runs in time order-of  If , which nk n  =  n .k 2 2k m = O n( )

is the most usual case where the length of  is proportional to the length of , then  and this all f x( ) x k = 1

runs in  time.O n2

 
Example: Recall the factoring language was defined as  has a prime factor  FACT =  ⟨N, k⟩ :  N{ p

such that .  Let us instead define it as  has a prime factor  such that p ≤ k} FACT =  ⟨N, k⟩ :  N{ p

  Then  is the undergraph of the function the greatest prime factor of .  The p ≥ k .} FACT f N =( ) N

function exnables us to factor  by repeatedly finding and dividing out its prime factors.  And binary N

search tells us that the language  is enough to compute the function:FACT

 

 



 
Theorem: Factoring is computable in quadratic time given  as an oracle.FACT

 
This is summarized by saying that search reduces to decision and is a major reason why languages not 
functions are used as the main objects in complexity theory.  A second example defines 

, where means "is a prefix of."  Consider this code:L'  =  ⟨x, w⟩ :  w ⊑  f x  f { ( )} ⊑

 
w = ;  if (  ) then output fail.𝜖 ⟨x, w⟩ ∉  L'f
while(true) {

   if (  ) {⟨x, w0⟩ ∈  L'f
      w = w0;

   else if (  )⟨x, w1⟩ ∈  L'f
      w = w1;

   else return w;

}

 
On input , this stops when  and returns .  So it computes .  The main example is the x w =  f x( ) w f x( )

idea of building up an answer string ---such as a satisfying truth assignment---bit by bit:w
 
Theorem: If  is in , then not only could we decide whether a given Boolean formula  is SAT P 𝜙
satisfiable, we would be able to find a satisfying assignment in polynomial time, or tell that none exists.
 
 
Relativized Classes and Turing Reductions
 
If  is a class of machines, then we write  to be the class of languages  over all machines C CB L MB

.  Thus for any language ,M B

• P  =  L M :  The DOTM M runs in polynomial time with oracle BB B ( )

• NP  =  B  L N :  The NOTM N runs in polynomial time with oracle BB ( )

• PSPACE  =  L M :  The DOTM M runs in polynomial space with oracle BB B ( )

If  then we also write  and say that  polynomial-time Turing reduces to .  (Older A ∈  PB A ≤  B
p
T A B

usage:  "Cook-reduces" to , in constrast to saying "Karp-reduces" for .)  Note: if  then A B ≤
p
m A ≤  B

p
m

, i.e. Turing reductions are more general than mapping reductions.A ≤  B
p
T

 

Fact: For any language ,   :  queries  and accepts  iff the oracle says no.A A ≤  p
T A M xA( ) y = x x

 
 
Theorem: .P  =  NP =  PSPACETQBF TQBF

 

 



 

Proof:  is contained in  because TQBF is -complete under  and an OTM PSPACE P
TQBF

PSPACE ≤
p
m

can carry out a many-one reduction  by making just one query  and accepting  iff the f y =  f x( ) x

oracle says "yes" to .  Now let  via a nondeterministic OTM (NOTM)  that runs in time y A ∈ NP
TQBF N

.  Then on any input  of length ,  can make up to  nondeterministic steps and can write O nk x n N x( ) nk

queries  (which are quantified Boolean sentences that may be true or false) of length up to .  y nk

Without loss of generality, we may suppose the nondeterministic steps are binary-branching.  A 
deterministic, non-oracle Turing machine  can accept  the following way:M A

 

1. Use  tape cells to cycle through all possible nondeterministic sequences .nk r ∈  0, 1{ }n
k

2. For each , simulate  with  deterministically until it writes a query  (which gets stored on a r N x( ) r y

worktape of  cells that counts against the space bound.)nk

3. Answer  deterministically by solving TQBF in linear space, which here means space .y O nk

4. Then go back to step 2 until the next query , answer it per step 3, and repeat until the y'

computation path of  with  finishes.  If it accepts, then accept ; else try the next , N xTQBF( ) r x r

and finally reject if no  works.r
 
This all adds up to space used by , so  belongs to .  O nk M A PSPACE ☒
 
The subversive impact of comes from the following "meta-theorems":P  =  NPTQBF TQBF

 
Meta-Theorem 1: Every theorem about (un-)decidability and reductions and relationships among 
deterministic and nondeterministic time and space that is taught in this course relativizes, meaning 
that for any oracle language  (or oracle function ), the statements hold when all machines and B f

classes are defined with access to  (or ).  For example, the relativized diagonal languageB f
 

D  =  ⟨M⟩ :  M is a deterministic OTM and M  does not accept ⟨M⟩B B

 
is not "decidable in " nor even "computably enumerable in "---the latter meaning there is no OTM  B B Q

such that .  The proof is essentially the same: .  This is because the L Q  =  DB B Q ⟨Q⟩  =  ??B( )

proof only pays attention to the input/output behavior of the programs, taking no care about how they 
process information internally---and might cheat!  Thus, for any , we have:B
 

1. RE  ≠  co REB - B

2. .RE  ∩  co RE  =  RECB - B B

3.  is complete for  under .  (The reductions do not A  =  ⟨M, w⟩ :  w ∈  L MB
TM

B REB ≤ m
log

need to use the oracle---they are only translating syntax with no regard to the oracle feature.)
 

 

 



It is even possible to define a "relativized version"  in which special formula variables reference 3SATB

the oracle's yes/no answers and prove by extending the Cook-Levin idea that it is complete for  NPB

(again under reductions that do not need the oracle for themselves).  This is broadly known as ≤ m
log

the "principle of relativization for elementary methods."  But this means:
 
Meta-Theorem 2: Such elementary methods cannot prove .P ≠  NP
 
Proof: If they could, then by the principle of relativization, they would prove  for all P  ≠  NPB B

languages .  But we just proved that .  B P  =  NPTQBF TQBF ☒
 
More briefly put: the formal system behind CSE491/596 can prove its own inability to prove the 
conjectured side of the greatest problem in the field (unless CSE491/596 is inconsistent).  It cannot 
prove the other side  either, owing to the counterpart result:P =  NP
 
Theorem: We can build a language  such that .B P  ≠  NPB B

 
[Proof Sketch: For any language ,  includes the languageB  NPB

 .  L  =  0 :  ∃y |y| =  n ∧  y ∈  BB n ( )[ ]

Now suppose we have any finite set  and deterministic OTM  that runs in polynomial time .  We F M p n( )

can choose a number  such that and all strings  have length .  Now simulate  n 2  >  p n  n ( ) F <  n MF

on input  while keeping track of (i) all strings  of length  that  queries, (ii) if  0n y n M 0F n M 0F n

queries a string of length , let  be the length of the longest such string, else , and (iii) >  n m m =  n + 1

whether  accepts .  Note that all queries of length  and higher get answered "no" since  has no MF 0n n F
strings of those lengths.  
 

• If  accepts , then do nothing at length .  We have  but ).M 0n n 0  ∉  Ln F 0  ∈  L Mn ( F

• If  rejects , then by , there must be some string  that was not M 0n 2  >  p nn ( ) z ∈  0, 1{ }n

queried.  Add  to .z F

• Either way, there must be some string  that  did not query either.  Add  to  to z' ∈  0, 1{ }m M z' F

make .  F'

• Then the second step gave us  and the third step did nothing to change 0  ∈  L  ⧵  L Mn F' F'

that.
 
Moreover, because we added  to , if we repeat this process with a new polynomial -time 1m F' p' n( )

machine  using oracle , all further alterations will occur at lengths  and hence not disturb the M' F' >  m

way we guaranteed that  cannot agree with  on the string .  Thus we can repeat the process on M LF 0n

 without disturbing how we "digonalizes against" .  As we continue, the sequence of finite sets M' M

builds a language .  Since every polynomial-time OTM eventually gets tried and defeated, we get that B

the final  does not belong to .  ]LB PB ☒

 

 



 
Note, by the way, that there is no contradiction or paradox in the fact of having  yet P  ≠  NPB B

 (with ).  The issue is what range of techniques can be used to prove it.  The P  =  NPA A A =  TQBF
great lack in the field as it stands is that no one has been able to formulate an incisive measure of how 
much information has been incrementally internally "processed."  But we have come to understand the 
blockages---called barriers---better and better.  Most of the ones after the "relativzation barrier" have to 
do with randomness and its relation to computational hardness.
 
 
Randomized Complexity
 
Our last "big fact" in classical complexity theory is that random bits can be a time-saving resource.  
How this can happen is best conveyed by an example.  
 
Suppose you have three  matrices  for which it is claimed that .  What is the n × n A, B, C AB =  C
quickest way you can check this?  You can:
 

• Multiply  out and see if the answer equals .  Uisng the basic matrix multiplication algorithm, AB C

this takes time .  Using various forms of Strassen's Algorithm, one can push this down to O n3

, or down below  with much bigger constants in the " .O n2.81... O n2.5 O"

• Try checking  for multiple vectors .  Per vector , this takes only  time.  If A ⋅ Bu =  Cu u u O n2

you ever get  then you know  .  But if you keep getting equal results for A ⋅ Bu ≠  Cu AB ≠  C

trial vectors , can you really be sure that ?u AB =  C
 
The answer is that although you can never be certain, you can make the odds of " " being a AB =  C

false positive very low by judiciously random choices of trial vectors , while still using only  u nO 2

time overall.  The tilde means "ignoring some power of ."  Let's do this rigorously when the nlog
matrices are over the field mod-2, which is actually the worst case.
 
For any natural number ,  stands for the integers modulo .  If  is a prime number , then  is m Zm m m p Zp

a field (so that one can divide as well as multiply) and we write it as .  The field structure helps us Fp

prove the following result more easily.
 
Lemma: Suppose  are  matrices over  such that .  ThenA, B, C n ×  n Fp AB ≠  C

 .  A Bu  ≠  Cu  ≥  Pr
u∈Fn

p
[( ( ) ]

p - 1

p
 
Proof: Write .  Note that we are not going to calculate , because that would take the D =  AB -  C D

(standardly cubic) time for multiplying  and  that we are trying to avoid, but we are allowed to argue A B

based on its existence.   By linearity, .  So  has at least one row  with a ABu ≠  Cu ⟺  Du ≠  0 D i

nonzero entry, and its use may give a nonzero entry in the -th place of the column vector .  i v =  Du

 

 



Note that

.v  =  D i, j ui ∑
n

j=1

[ ] j

 
Let  be a column in which row  has entry .  For any vector , we can writej0 i c =  D i, j  ≠  0[ 0] u
 

.v  =  cu  +  a    where    a = D i, j ui j0
∑

 

j≠j0
[ ] j

 
The key observation is that because  is a field, for any , the values  run through all  Fp c ≠  0 cuj0

p

possible values as  runs through all  possibilities.  Regardless of the value of  determined by the uj0
p a

rest of row  and the rest of the vector , the values  run through all  possibilities with equal i u cu +  aj0 p

probability.  Hence the probability that  is exactly .  The probability of getting  (which v  ≠  0i
p-1

p
v ≠  0

could come from other nonzero entries too) is at least as great.  The upshot is:
 

• If  then you will never be deceived: you will always get equal values from  and AB =  C A Bu( )

 and will correctly answer "yes, equal."Cu

• If  and you try  vectors  at random, if you ever get  then you will know AB ≠  C k u A Bu  ≠  Cu( )
to answer "no, unequal" with 100% confidence.  

• If you get equality each time, you will answer "yes, equal" but there is a  chance of error.  
1

pk

 
If you consider, say, a 1-in-  chance of being wrong as minuscule, then you only need to pick  so that n3 k

, so  will suffice.  Presuming  is fixed, this means  trials will suffice.  p  >  nk 3 k =  n
3

plog
log p O  n(log )

The resulting  running time handily beats the time for multiplying  out.  Thus O n n  =  n2 log O 2 AB

we trade off sureness for time.  ☒
 
For arithmetic modulo  not prime, or without any modulus, the analysis is messier---but not only is the m

essence the same, but the asymptotic order of  in terms of  and the confidence target  is much k n 𝜖 n( )

the same---it didn't really depend on  to begin with.  p
 
 
Randomized Complexity Classes
 
The matrix example makes the probability easiest to figure because it is linear, but it does not show a 
difference between "polynomial" and "exponential".  This is enshrined in the definitions of the 
complexity classes , , and co- .  It is convenient to think of polynomial-time computable BPP RP RP

predicates  where  ranges over  with equal length rather than say  (with R x, y( ) y 0, 1{ }p n( ) |y| ≤  p n( )

 as usual).  Then  is a sequence of  coin-flips.  n =  |x| y p n( )
 

 

 

 



Definition: A language  belongs to  if there is a polynomial  and a polynomial-time decidable L BPP p

predicate  such that for all  and  of length :R x, y( ) n x n
 

;x ∈  L ⟹  R x, y  >  3 / 4Pr|y|=p n( )[ ( )]

.x ∉  L ⟹  R x, y  <  1 / 4Pr|y|=p n( )[ ( )]

 
If the second probability is always  then  is in ; if instead the first probability is always  then  is 0 L RP 0 A

in co- ; together these cases are called having one-sided error.  Note that the first probability being RP

always  is equivalent to saying it is always  for the complementary predicate , which is where 1 0 x, yR( )

 and co-  start to get confusing.  The same ability to flip between  and its negation tells right RP RP R

away that  is closed under complements, which makes it less confusing.  For , we can also BPP BPP

combine the conditions into one, namely
 

.L x  =  R x, y  >  3 / 4Pr|y|=p n( )[ ( ) ( )]

 
But this is often less helpful than having the two separate probabilities.  Note that if the second 
probability is  then  is impossible when .  It follows that having  be true makes  0 R x, y( ) x ∉  A R x, y( ) y

a valid witness for , so we have proved the following:x ∈  A
 
Proposition:  and co- . RP ⊆  NP RP ⊆  co - NP ☒
 

Of course , so whether a problem belongs to  or to co-  depends on L ∈  RP ⟺   ∈ co - RPL RP RP

which side one takes as the "yes" side.  If you regard  as the yes side and  as the AB =  C ABu =  Cu

verifying predicate " ", then the matrix example has one-sided error of the "co-  type", R ⟨A, B, C⟩,  u( ) RP

meaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in a 
true-negative case there is a tiny chance of getting a false positive (i.e., thinking  because AB =  C

every  that you tried gave ).  You could say that the languageu A Bu  =  Cu( )
 

 belongs to co- ,L =  ⟨A, B, C⟩ :  AB =  C{ } RPTIME nO 2

 
but this notation gets ugly and hides the dependence between the error probability and the time 
allowed for multiple trials.  It is, however, even surer than for the  matrix case:AB = C
 
Amplification Lemma: If  with associated  and , then for any polynomial  we A ∈  BPP R x, y( ) p n( ) q n( )

can build a polynomial-time decidable  and associated polynomial  such that for all ,R' x, z( ) p' n( ) x

;x ∈  A ⟹  R' x, z  >  1 -  2Pr|z|=p' n( )[ ( )] -q n( )

.        x ∉  A ⟹  R' x, z  <  2Pr|z|=p' n( )[ ( )] -q n( )

 
Moreover, we can achieve this even if the original  and  only give a "non-negligible" advantage, R p

meaning that for some polynomial ,r n  ≥  n( )

 

 



;x ∈  A ⟹  R x, y  >   +  Pr|y|=p n( )[ ( )]
1

2

1

r n( )

.x ∉  A ⟹  R x, y  <   -  Pr|y|=p n( )[ ( )]
1

2

1

r n( )
 
Proof Sketch: Regard  where and define  to be the z =  ⟨y , y , … , y ⟩1 2 q' n( ) q' n  = O q n  ( ) ( ( )) R' x, z( )

majority vote of the polynomially-many trials .    R x, y( j) ☒
 
There is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentially 
small error are simpler because you don't need majority vote.   A philosophical point is that the the 
theoretical software error can be reduced below the chance of hardware error---but when you see 
something like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPR 
two weeks ago), maybe that's not so reassuring...  
 
The definition of the quantum complexity class  is similar, except that in place of getting  such BQP y

that  by rolling classical dice, we have a quantum circuit  in place of  and get the effect of  R x, y( ) C R y
by measurements.  Amplification and many other properties hold similarly; the main external difference 
is that the factoring problem and some others belong to  but (hopefully!) not to .  Well, we BQP BPP

have to start by defining quantum circuits and algorithms in the last big section of this course.  Here is a 
diagram that adds these randomized classes to the "landscape":

 

 

P

NP co-NP
𝜃 >  45∘

A

B

means A ≤  B
p
m

REG

∃q ∀q

Note differences from
the unbounded 
computability case: 
NP intersect co-NP is
not known (or believed) 
to equal P, and the 
quantifiers are length-
bounded by a polynomial.
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SAT, G3C TAUT

BPP BP
P

RP co-RP

BQP

BQP BQP

L
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CVP
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PSPACE

TQBF
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REC co-RE

Known: 
EXP ≠  P,
PSPACE ≠  NL
L ≠  REG

(and , etc.)EXP ≠  REC ≠  RE


