The first half of lecture finished the time and space hierarchy theorems.

Log Space Reducibility \leq^m_\log Finer than \leq^m since L\subseteqP.

Log Space Computable Functions

Technical Point: If M and N belong to NL (function logspace) then so does $g(f(x))$.

Issue: If M computes $y = f(x)$ and M' computes $z = g(y)$, we can chain M and M' together but we can't store y within the $O(\log n)$ space.

- If the input tapes of both machine are right-only as well as read-only, then there is no problem: the output $y = f(x)$ of M is streamed to M' computing $g(y) = z$ and never has to be written down.
- If each machine is allowed $r(n)$ left-to-right streaming passes over its input and y is a stream, then the tandem can operate with $r(n)^2$ passes on x.
- But if M' can demand to back up to a previous input bit y_{i-1} at any time, then we need to allow M to be restarted arbitrarily many times. This can be implemented by storing the current demand-bit i on another log-sized tape.

Therefore \leq^m_\log reduction are transitive: $A \leq^m_\log B \leq^m_\log C \Rightarrow A \leq^m_\log C$.

In fact, every \leq^m and \leq^m_\log reduction shown in the course has actually been a \leq^m_\log reduction or even the sharper one pass streaming kind.
• All the NP-completeness results we’ve shown have been valid under $\leq \frac{\text{log}}{m}$.

• **GAP** is complete for **NL** under $\leq \frac{\text{log}}{m}$.

• The language **CVP** of the **Circuit Value Problem**: given a Boolean circuit C_n and an input $x \in \{0, 1\}^n$, is $C_n(x) = 1$? is complete for **P** under $\leq \frac{\text{log}}{m}$.

• The language **TQBF** of true **quantified Boolean formulas** is complete for **PSPACE** under $\leq \frac{\text{log}}{m}$.