CSE491/596 Lecture Friday, 11/17/23: Multi-Qubit Matrices and Gates

An n-qubit quantum state is denoted by a unit vector in CN where N = 2". Thus, a 2-qubit state is
represented by a unit vector in C*. That takes up 8 real dimensions, and even trying tricks as for the
Bloch Sphere would bring that down only to a 6-dimensional hypersurface in R”. Until we have a
Hyper-Zoom able to help us visualize 7-dimensional space, we have to rely on linear algebra and some
general ideas shared by Hilbert Spaces whether real or complex.

One of those ideas is the standard basis. In 4-space, this is given by the vectors:
eop = (1,0,0,0), e1 = (0,1,0,0), e = (0,0,1,0), e3 = (0,0,0,1).

The indexing scheme for quantum coordinates changes the labels to come from {0, 1}? instead of
from {1, 2, 3,4}, using the canonical binary order 00, 01,10, 11. Then we have:

oo = (1/ OI 0/ O)/ €1 = (O/ 1/ O/ O)I €10 = (0/ O/ 1/ 0)/ 11 = (0/ O/ O/ 1)

The big advantage is that these basis elements are all separable and the labels respect the tensor
products involved:

|00) = ¢y = (1,0,0,0) = (1,00®(1,0) = ¢g ® ¢ = |0)®|0) = |0)|0)
|01) = ey = (0,1,0,0) = (1,00®(0,1) = ¢y ® e; = |0)®[1) = [0)|1)
10> = ey0 = (0,0,1,0) = (0,1)®(1,0) = ¢ ® ¢g = [1)®[|0) = [1)]|0)
|11) = e;; = (0,0,0,1) = (0,1)®(0,1) = e ® e; = |1)®[1) = [1)]1)

It is OK to picture the tensoring with row vectors, but because humanity chose to write matrix-vector
products as Muv rather than vM, they need to be treated as column vectors. This will lead to cognitive
dissonance when we read quantum circuits left-to-right but have to compose matrices right-to-left.
Lipton and | are curious whether a "non-handed" description of nature can work.

L

With the "plus” and "minus" states, we also have (note Lz(l, He—@1,1) = %(1, H®(@1,1)):

V2R
[+4) = [+)®+) = 3(1, De, 1) = 31, 1, 1, 1)= 2RO
+-) = [9Y®|-) = 3(1, De,-1) = 3(1,-1, 1,-1) = 2P IR 1D
I~ = [)®l+) = 3(L,-Ded, 1) = 41, 1,-1,-1) = 2L H0 -1
--> = [-)®|-) = 3(1,-Ded,-1) = 5(1,-1,-1, 1) = L2 LT ID

These four vectors are linearly independent and mutually orthogonal, so they form an orthonormal
basis. We can map the standard 4-dimensional basis to this one by forming the target vectors into a



matrix---happily the matrix is symmetric and real so "handedness" does not come into play:

[1 1‘1 1
1 -1]1 1 _1[1 1]®[1 1
2[11‘—1—1_21—1 1 -1
1 -1|-1 1

l=H®H=H®2.

Well, this is the case m = 2 of the Hadamard transform H®" | about which more on Monday. Also
note the following tensor products of 2 X 2 matrices:

1 0‘ 1 0
er- ol el -
01 -1
[1 1 ‘0 0
ter = [1 0o ]! }1]=¢[3 ‘J}? i
0 011 -1
Some examples of states you can produce with these matrices are:
1405 = [+)>®]0) = %(1,1)69(1,0) =\%2<1,0r1/0>=w
0+) = 10)&l+) = Z1,081,1) = 12(1,1,0,0 = ==
Meanwhile,
+1) = D8l = 20,801 = 01,01 = 222

can be gotten as H ® I applied to the column vector (0,1,0,0)” = |01). However, the state

11
L(l, 0,0,1) = 1003 + 11)
V2 V2
Instead, it needs the help of a 4 X 4 unitary matrix that is not a tensor product of two smaller matrices.
The most omnipresent one of these is:

, which we saw in the last lecture is entangled, cannot be gotten this way.

CNOT =

S O O
o O Rk O
_ O O O
O = OO



Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis,
the values are: CNOTe,, = CNOT|00) = |00), CNOTey; = CNOT|01)> = |01),

CNOTe;; = CNOT|10) = |11), and CNOTe;; = CNOT|11) = |10). We can get these
from the respective columns of the CNOT matrix, and we can label the quantum coordinates right on it:

[ 100 01 10 11
00{1 0 t
0101

~ 11010 0 1
- H+—6—1 0 |

Because we multiply column vectors, the co-ordinates of the argument vector come in the top and go
out to the left. If the first qubit is 0, then the whole gate acts as the identity. But if the first qubit is 1,
then the basis value of the second qubit gets flipped---the same action as the NOT gate X. Hence the
name Controlled-NOT, abbreviated CNOT: the NOT action is controlled by the first qubit. The action
on a general 2-qubit quantum state ¢ = (a, b, ¢, d) is even easier to picture:

CNOT

QU 0O D
O LTSN

All it does is switch the third and fourth components---of any 4-dim. state vector. Hence, CNOT is a
permutation gate and is entirely deterministic. Permuting these two indices is exactly what we need to

transform the separable state \%(1, 0,1, 0) into the entangled state %(1, 0,0,1). Since we got the
former state from H ® I applied to ey, the matrix we want is
1000 101 0 110 1 0 |f1 1
0100 1101 0 1 11011 0 110 110
CNOT-H®1I) = L= = — =— " |
( ) 0001 V21 0-1 0 V210(1 0 -11/0 V2| 0
0010 01 0 -1 110 -1 0 ][0 1

We can see the result coming from the first column. When we do a quantum circuit left-to-right,
however, the (H ® I) part comes first on the left. The symbol for a CNOT gate is to use a black dot to
represent the control on the source qubit and @ (which | have used as a symbol for XOR) on the target
qubit. This is more easily pictured by a quantum circuit diagram:
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If x; = |0), then we can tell exactly what y is: it is the |+) state. Andifx; = |[1),theny = [-). If
X is any separate qubit state (2,b) = a|0) + b|1), then by linearity we know that
y = a|+) + b|-). This expresses y over the transformed basis; in the standard basis it is

L

5D +b(1, 1)) = \iﬁ(a +b,a-b).

So we can say exactly what the input coming in to the first "wire" of the CNOT gate is. And the input to
the second wire is just whatever x, is. But because that gate does entanglement, we cannot specify
individual values for the wires coming out. The state is an inseparable 2-qubit state:

1
\—6(|00> + |11)).

If you measure either qubit individually, you get 0 or 1 with equal probability. This is the same as if you
measured the state |++ ). But that state is outwardly as well as inwardly different. When both qubits
to be measured, it allows 01 and 10 as possible outcomes, whereas measuring the entangled state
does not. I've seen papers telling ways to visualize entangled states of 2 or 3 qubits, but none
implemented by an applet so far---quantum-circuit.com just shows Bloch spheres with the black

dot at the center for the "completely mixed state™: | \_(*/)_/ ).

Three Qubits and More

The CNOT gate by itself has the logical description z; = x; andz, =Xx; & X,. This means that if
x1 = 0thenz, = x,,butifx; = 1thenz, = -x,. Since this description is complete for all of the
standard basis inputs x = x7x, = 00,01, 10, 11, it extends by linearity to all quantum states. We
can use this idea to specify the 3-qubit Toffoli gate (Tof). It has inputs x1, x;, X3 and symbolic outputs
Z1, Z2, 23 (which, however, might not have individual values in non-basis cases owing to entanglement).
Its spec in the basis quantum coordinates is:

Zy = X1, Zp = Xp,2Z3 = X3 ® (X1 A Xp).
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Of particular note is that if x5 is fixed to be a constant-1 input, then
z3 = =(x1 A xp) = NAND(x1, x7).

Thus the Toffoli gate subsumes a classical NAND gate, except that you need an extra "helper wire" to
put x3 = 1 and you gate two extra output wires z1, z, that only compute the identity on x7, x» (in
classical logic, that is---a non-basis quantum state can have knock-on effects even though all Toffoli
does is switch the 7th and 8th components of the state vectors). If you have polynomially many Toffoli
gates, then you get only polynomially much wastage of wires, and you can use the good ones to
simulate any polynomial-size Boolean circuit of NAND gates. Because DTIME[#(1)] has Boolean

circuits of size O(t(n)), and because Toffoli gates are deterministic, we can state an immediate
consequence:

Theorem: For fully time-constructible #(11) between linear and exponential.

DTIME[Hm)] € DQ|O(tmy)].
In particular, P € DQP C BQP.

Well, we need to say more broadly what it means for quantum computations to be (polynomially)
feasible. The community convention is simply to count up gates of 1, 2, or 3 qubits as constant cost.
Gates involving more qubits are OK if they can be built up out of the small gates. We have already

seen that H®" is just 7 binary Hadamard gates laid out in parallel. The n-qubit quantum Fourier
transform (next week) can be built up out of O(n2) smaller gates---this actually has more "fine print"
than sources usually say and is pursued in the chapter exercises of my book with Lipton.

And BQP isto DQP as BPP is to P. We should describe measurements in more detail and see
smaller-scale deterministic and randomized examples first.



