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II
For any natural number For any natural number , ,  stands for the integers modulo  stands for the integers modulo .  If .  If  is a prime number  is a prime number , then , then  is a is a  mm ZZmm mm mm pp ZZpp

fieldfield (so that one can divide as well as multiply) and we write it as  (so that one can divide as well as multiply) and we write it as .  The simplest such case is .  The simplest such case is   FFpp p p ==  2 2

which is which is  with the usual addition modulo  with the usual addition modulo and multiplication.  The field structure helps us prove theand multiplication.  The field structure helps us prove the  00,, 11{{ }} 2 2 
following result more easily.following result more easily.
  
LemmaLemma: Suppose : Suppose  are  are  matrices over  matrices over  such that  such that .  Then.  ThenAA,, BB,, CC n n ××  n n FFpp AB AB ≠≠  C C

  ..    ABu ABu ≠≠  Cu Cu   ≥≥   PrPru∈u∈FFnn
pp
[[ ]]

pp -- 11

pp
  
ProofProof: Write : Write .  Note that we are not going to .  Note that we are not going to calculatecalculate  , because that would take the, because that would take the  D D ==  AB  AB --  C C DD

(standardly cubic) time for multiplying (standardly cubic) time for multiplying  and  and  that we are trying to avoid, but we are allowed to  that we are trying to avoid, but we are allowed to argueargue  AA BB

based on its existencebased on its existence.   By linearity, .   By linearity, .  So .  So  has at least one row  has at least one row  with a with a  ABu ABu ≠≠  Cu  Cu ⟺⟺  Du  Du ≠≠  0 0 DD ii

nonzero entry, and its use may give a nonzero entry in the nonzero entry, and its use may give a nonzero entry in the -th place of the column vector -th place of the column vector ..    ii v v ==  Du Du
Note thatNote that

..vv   ==   DD ii,, jj uuii ∑∑
nn

j=1j=1

[[ ]] jj

  
Let Let  be a column in which row  be a column in which row  has entry  has entry .  For any vector .  For any vector , we can write, we can writejj00 ii c c ==  D D ii,, jj   ≠≠  0 0[[ 00]] uu
  

..vv   ==  cu cu   ++  a    where    a  a    where    a == DD ii,, jj uuii jj00
∑∑

  

j≠jj≠j00
[[ ]] jj

  
The key observation is that because The key observation is that because  is a field, for any  is a field, for any , the values , the values  run through all  run through all   FFpp c c ≠≠  0 0 cucujj00 pp

possible values as possible values as  runs through all  runs through all  possibilities.  Regardless of the value of  possibilities.  Regardless of the value of  determined by the determined by the  uujj00 pp aa

rest of row rest of row  and the rest of the vector  and the rest of the vector , the values , the values  run through all  run through all  possibilities with equal possibilities with equal  ii uu cucu ++  a ajj00 pp

probability.  Hence the probability that probability.  Hence the probability that  is exactly  is exactly .  The probability of getting .  The probability of getting  (which (which  vv   ≠≠  0 0ii
p-1p-1

pp
v v ≠≠  0 0

could come from other nonzero entries too) is at least as great.  could come from other nonzero entries too) is at least as great.  ☒☒
  
The upshot is:The upshot is:
  

• • If If  then you will never be deceived: you will always get equal values from  then you will never be deceived: you will always get equal values from  and  and   AB AB ==  C C AA BuBu(( )) CuCu
and will correctly answer "yes, equal."and will correctly answer "yes, equal."

• • If If  and you try  and you try  vectors  vectors  at random, if you ever get  at random, if you ever get  then you will know to then you will know to  AB AB ≠≠  C C kk uu AA BuBu   ≠≠  Cu Cu(( ))
answer "no, unequal" with 100% confidence.answer "no, unequal" with 100% confidence.    

• • If you get equality each time, you will answer "yes, equal" but there is a If you get equality each time, you will answer "yes, equal" but there is a  chance of being wrong. chance of being wrong.  11

ppkk

  
  

  



If you consider, say, a 1-in-If you consider, say, a 1-in-  chance of being wrong as minuscule, then you only need to pick  chance of being wrong as minuscule, then you only need to pick  so that so that  nn33 kk

, so , so  will suffice.  Presuming  will suffice.  Presuming  is fixed, this means  is fixed, this means  trials will suffice. trials will suffice.    pp   >>  n nkk 33 k k ==   nn
33

pploglog
loglog pp OO  n n((loglog ))

The resulting The resulting  running time handily beats the time for multiplying  running time handily beats the time for multiplying  out.  Thus out.  Thus  OO nn nn   ==   nn22 loglog OO 22 ABAB

we trade off we trade off surenesssureness for  for timetime..    
  
For arithmetic modulo For arithmetic modulo  not prime, or without any modulus, the analysis is messier---but not only is the not prime, or without any modulus, the analysis is messier---but not only is the  mm

essence the same, but the asymptotic order of essence the same, but the asymptotic order of  in terms of  in terms of  and the confidence target  and the confidence target  is much the is much the  kk nn 𝜖𝜖 nn(( ))

same---it didn't really depend on same---it didn't really depend on  to begin with. to begin with.    pp
  

IIII
The matrix example makes the probability easiest to figure because it is The matrix example makes the probability easiest to figure because it is linearlinear, but it does not show a, but it does not show a  
difference between "polynomial" and "exponential".  This is enshrined in the definitions of the complexitydifference between "polynomial" and "exponential".  This is enshrined in the definitions of the complexity  
classes classes , , , and , and co-co- .  It is convenient to think of polynomial-time computable predicates .  It is convenient to think of polynomial-time computable predicates   BPPBPP RPRP RPRP RR xx,, yy(( ))

where where  ranges over  ranges over  with equal length rather than say  with equal length rather than say  (with  (with  as usual). as usual).    yy 00,, 11{{ }}pp nn(( )) ||yy||  ≤≤  p p nn(( )) n n ==   ||xx||

Then Then  is a sequence of  is a sequence of  coin-flips. coin-flips.    yy pp nn(( ))
  
DefinitionDefinition: A language : A language  belongs to  belongs to  if there is a polynomial  if there is a polynomial  and a polynomial-time decidable and a polynomial-time decidable  AA BPPBPP pp

predicate predicate  such that for all  such that for all  and  and  of length  of length ::RR xx,, yy(( )) nn xx nn
  

;;x x ∈∈  A  A ⟹⟹   RR xx,, yy   >>  3 3 // 44PrPr|y|=p|y|=p nn(( ))[[ (( ))]]

..x x ∉∉  A  A ⟹⟹   RR xx,, yy   <<  1 1 // 44PrPr|y|=p|y|=p nn(( ))[[ (( ))]]

  
If the second probability is always If the second probability is always  then  then  is in  is in ; if instead the first probability is always ; if instead the first probability is always  then  then  is in is in  00 AA RPRP 00 AA

co-co- ; together these cases are called having ; together these cases are called having one-sided errorone-sided error.  Note that the first probability being.  Note that the first probability being  RPRP

always always  is equivalent to saying it is always  is equivalent to saying it is always  for the complementary predicate  for the complementary predicate , which is where, which is where  11 00 xx,, yyRR(( ))

 and  and co-co-  start to get confusing.  The same ability to flip between  start to get confusing.  The same ability to flip between  and its negation tells right away and its negation tells right away  RPRP RPRP RR

that that  is closed under complements, which makes it less confusing.  For  is closed under complements, which makes it less confusing.  For , we can also combine, we can also combine  BPPBPP BPPBPP

the conditions into one, namelythe conditions into one, namely
  

..AA xx   ==  R R xx,, yy   >>  3 3 // 44PrPr|y|=p|y|=p nn(( ))[[ (( )) (( ))]]

  
But this is often less helpful than having the two separate probabilities.  Note that if the secondBut this is often less helpful than having the two separate probabilities.  Note that if the second  
probability is probability is  then  then  is impossible when  is impossible when .  It follows that having .  It follows that having  be true makes  be true makes  a a  00 RR xx,, yy(( )) x x ∉∉  A A RR xx,, yy(( )) yy

valid valid witnesswitness for  for , so we have proved the following:, so we have proved the following:x x ∈∈  A A
  
PropositionProposition: :  and  and co-co- . . RPRP  ⊆⊆   NPNP RPRP  ⊆⊆   coco --NPNP ☒☒
  

Of course Of course , so whether a problem belongs to , so whether a problem belongs to  or to  or to co-co-  depends on depends on  L L ∈∈   RPRP  ⟺⟺     ∈∈ coco --RPRPLL RPRP RPRP

which side one takes as the "yes" side.  If you regard which side one takes as the "yes" side.  If you regard  as the yes side and  as the yes side and  as the as the  AB AB ==  C C ABu ABu ==  Cu Cu

verifying predicate "verifying predicate " ", then the matrix example has one-sided error of the "", then the matrix example has one-sided error of the "co-co-  type", type",  RR ⟨⟨AA,, BB,, CC⟩⟩,,  u u(( )) RPRP



meaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in ameaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in a  
true-negative case there is a tiny chance of getting a false positive (i.e., thinking true-negative case there is a tiny chance of getting a false positive (i.e., thinking  because because  AB AB ==  C C

every every  that you tried gave  that you tried gave ).  You could say that the language).  You could say that the languageuu AA BuBu   ==  Cu Cu(( ))
  

 belongs to  belongs to co-co- ,,L L ==   ⟨⟨AA,, BB,, CC⟩⟩ ::  AB  AB ==  C C{{ }} RPTIMERPTIME nnOO 22

  
but this notation gets ugly and hides the dependence between the error probability and the time allowedbut this notation gets ugly and hides the dependence between the error probability and the time allowed  
for multiple trials.  For polynomial bounds it is even more favorable than for "Oh-tilde" type bounds:for multiple trials.  For polynomial bounds it is even more favorable than for "Oh-tilde" type bounds:
  
Amplification LemmaAmplification Lemma: If : If  with associated  with associated  and  and , then for any polynomial , then for any polynomial  we we  A A ∈∈   BPPBPP RR xx,, yy(( )) pp nn(( )) qq nn(( ))

can build a polynomial-time decidable can build a polynomial-time decidable  and associated polynomial  and associated polynomial  such that for all  such that for all ,,R'R' xx,, zz(( )) p'p' nn(( )) xx

;;x x ∈∈  A  A ⟹⟹   R'R' xx,, zz   >>  1  1 --  2 2PrPr|z|=p'|z|=p' nn(( ))[[ (( ))]] -q-q nn(( ))

..                x x ∉∉  A  A ⟹⟹   R'R' xx,, zz   <<  2 2PrPr|z|=p'|z|=p' nn(( ))[[ (( ))]] -q-q nn(( ))

  
Moreover, we can achieve this even if the original Moreover, we can achieve this even if the original  and  and  only give a "non-negligible" advantage, only give a "non-negligible" advantage,  RR pp

meaning that for some polynomial meaning that for some polynomial ,,rr nn   ≥≥  n n(( ))
  

;;x x ∈∈  A  A ⟹⟹   RR xx,, yy   >>     ++   PrPr|y|=p|y|=p nn(( ))[[ (( ))]]
11

22

11

rr nn(( ))

..x x ∉∉  A  A ⟹⟹   RR xx,, yy   <<     --   PrPr|y|=p|y|=p nn(( ))[[ (( ))]]
11

22

11

rr nn(( ))
  
Proof SketchProof Sketch: Regard : Regard  where  where and define and define  to be the to be the  z z ==   ⟨⟨yy ,, yy ,, …… ,, yy ⟩⟩11 22 q'q' nn(( )) q'q' nn   == OO qq nn   (( )) (( (( )))) R'R' xx,, zz(( ))

majority vote of the polynomially-many trials majority vote of the polynomially-many trials .  .      RR xx,, yy(( jj)) ☒☒
  
There is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentiallyThere is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentially  
small error are simpler because you don't need majority vote.   A philosophical point is that the thesmall error are simpler because you don't need majority vote.   A philosophical point is that the the  
theoretical software error can be reduced below the chance of hardware error---but when you seetheoretical software error can be reduced below the chance of hardware error---but when you see  
something like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPR twosomething like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPR two  
weeks ago), maybe that's not so reassuring...weeks ago), maybe that's not so reassuring...    
  
The definition of the quantum complexity class The definition of the quantum complexity class  is similar, except that in place of getting  is similar, except that in place of getting  such that such that  BQPBQP yy

 by rolling classical dice, we have a  by rolling classical dice, we have a quantum circuitquantum circuit   in place of  in place of  and get the effect of  and get the effect of  by by  RR xx,, yy(( )) CC RR yy
measurements.  Amplification and many other properties hold similarly; the main external difference ismeasurements.  Amplification and many other properties hold similarly; the main external difference is  
that the factoring problem and some others belong to that the factoring problem and some others belong to  but (hopefully!) not to  but (hopefully!) not to .  Added: The.  Added: The  BQPBQP BPPBPP

"landscape" of current knowledge is:"landscape" of current knowledge is:
  



  

IIIIII
Before 2002, the usual first example of a language in Before 2002, the usual first example of a language in  was the language of prime numbers, which was the language of prime numbers, which  BPPBPP

was long known to belong to was long known to belong to .  That is, before it was .  That is, before it was derandomizedderandomized by being by being  ZPPZPP  ==   RPRP  ∩∩   coco --RPRP
shown to belong to shown to belong to .  The deterministic algorithm runs with a higher polynomial exponent than the.  The deterministic algorithm runs with a higher polynomial exponent than the  PP

randomized ones, however, so many software primality tests are still randomized.  Except for therandomized ones, however, so many software primality tests are still randomized.  Except for the  
following bellwether problem, it is hard to find other examples, and even harder to find ones that are onlyfollowing bellwether problem, it is hard to find other examples, and even harder to find ones that are only  
known to have two-sided error.  Well, here is the big example (which Debray's notes call "Zero-Poly" andknown to have two-sided error.  Well, here is the big example (which Debray's notes call "Zero-Poly" and  
define only for define only for  not fields  not fields , but this is the standard name in all cases):, but this is the standard name in all cases):ZZ FF

  
Polynomial Identity TestingPolynomial Identity Testing ( ( ).).    PITPIT
InstanceInstance: A polynomial formula : A polynomial formula  over  over , , , or a field , or a field  (see notes on degree below). (see notes on degree below).ff xx ,, …… ,, xx(( 11 nn)) ZZ ZZmm FF

QuestionQuestion: Does : Does  when "multiplied out" cancel to the all-zero polynomial? when "multiplied out" cancel to the all-zero polynomial?ff
  
Multiplying out is not so simple---it can take exponential time.  Consider how in reducing from Multiplying out is not so simple---it can take exponential time.  Consider how in reducing from ExactlyExactly  
One 3SATOne 3SAT to  to Binary Linear EquationsBinary Linear Equations (presentation topic 4 of HW6) we get equations (presentation topic 4 of HW6) we get equations  

 from the  from the  clauses.  Each equation has 3 variables plus maybe a clauses.  Each equation has 3 variables plus maybe a  EE   ==  1 1,,  E E   ==  1 1,, …… ,,  E E   ==  1 111 22 mm mm

constant term.  We can multiply them together to get a single equation of degree (only!) constant term.  We can multiply them together to get a single equation of degree (only!) ::mm
  

..EE EE ⋯⋯ EE   --  1  1 ==  0 0(( 11))(( 22)) (( mm))
  
Multiplying this out, however, gives somewhere between Multiplying this out, however, gives somewhere between  and  and  terms.  Even so, we're hung up on terms.  Even so, we're hung up on  33mm 44mm

the "NP-side" of looking for one solution, rather than the "co-NP side" of seeing whether all assignmentsthe "NP-side" of looking for one solution, rather than the "co-NP side" of seeing whether all assignments  
are solutions.  This can be done, but you still have to mix in the non-linear equations are solutions.  This can be done, but you still have to mix in the non-linear equations  to to  xx   --  x x   ==  0 022

ii ii

force each variable to be force each variable to be  or  or , and even then, the resulting polynomial might not cancel entirely, and even then, the resulting polynomial might not cancel entirely  00 11
symbolically, as we show with a simple one-variable example next.symbolically, as we show with a simple one-variable example next.
  
A "yes" answer certainly implies that A "yes" answer certainly implies that  for all arguments  for all arguments .  Hence if we.  Hence if we  ff   ==  0 0((aa))   ==   aa ,, …… ,, aa   ∈∈   FFaa (( 11 nn)) nn

find an argument find an argument  such that  such that , then we know the answer is "no"., then we know the answer is "no".      ==   aa ,, …… ,, aaaa (( 11 nn)) ff aa ,, …… ,, aa   ≠≠  0 0(( 11 nn))

PP

NPNP co-co-NPNP
𝜃 𝜃 >>  45 45∘∘

AA

BB

means means A A ≤≤  B Bpp
mm

REGREG

∃∃qq ∀∀qq

Note differences fromNote differences from
the unbounded the unbounded 
computability case: computability case: 
NP intersect co-NP isNP intersect co-NP is
not known (or believed) not known (or believed) 
to equal P, and the to equal P, and the 
quantifiers are quantifiers are length-length-
boundedbounded by a polynomial. by a polynomial.

FACTFACT

PRIMESPRIMES

SAT, G3CSAT, G3C TAUTTAUT

BPP
BPP BP

P
BP

P

RPRP co-RPco-RP

BQPBQP

BQPBQP BQPBQP

BQPBQP is thought to hug the walls even  is thought to hug the walls even 
outside PH but never have NP-hard sets.  outside PH but never have NP-hard sets.  

BPP BPP stays within the second level of thestays within the second level of the
"polynomial hierarchy" ("polynomial hierarchy" (PHPH).).



Now observe the following examples/facts:Now observe the following examples/facts:
  

1. 1. There are polynomials that are zero on all There are polynomials that are zero on all  without multiplying out to zero; a simple one- without multiplying out to zero; a simple one-  ∈∈   FFaa nn

variable example (variable example ( ) with ) with  is  is  over  over ..    n n ==  1 1 p p ==  2 2 gg xx   ==  x x   --  x x(( 11)) 22
11 11 FF22

2. 2. However, if we enlarge the field to However, if we enlarge the field to  or  or  (etc.) while keeping the mod-2  (etc.) while keeping the mod-2 characteristiccharacteristic  F' F' ==  F F44 FF88

the same (note those are not the same as the integers mod 4 or mod 8), then the same (note those are not the same as the integers mod 4 or mod 8), then  is no longer is no longer  gg xx(( 11))

everywhere-zero over everywhere-zero over ..    FF''

3. 3. Whereas, if Whereas, if  multiplies out to zero over  multiplies out to zero over , then it multiplies out to zero over any, then it multiplies out to zero over any  ff xx ,, …… ,, xx(( 11 nn)) FF

 of the same characteristic (called an  of the same characteristic (called an extension fieldextension field), and vice-versa.), and vice-versa.    FF' ' ⊇⊇   FF
  
Points 1 and 2 are why the fact of Points 1 and 2 are why the fact of PITPIT being in  being in ---indeed, with one-sided error like in the ---indeed, with one-sided error like in the   BPPBPP AB AB ==  C C

matrix example---does not put matrix example---does not put SATSAT into  into .  (While composing these notes, I thought of a possible.  (While composing these notes, I thought of a possible  BPPBPP

allusion to how working with binary truth values involves the "law of excluded middle" while going toallusion to how working with binary truth values involves the "law of excluded middle" while going to  
 or  or  (etc.) means doing without it---but I am not sure how meaningful it is.) (etc.) means doing without it---but I am not sure how meaningful it is.)    F' F' ==  F F44 FF88

  
An important further point is that we can exponentiate the field size with only polynomial work: For anyAn important further point is that we can exponentiate the field size with only polynomial work: For any  

, ,  equals the binary vector space  equals the binary vector space  augmented with an extra multiplication operation  augmented with an extra multiplication operation  on on  k k >>  1 1 FF22kk FF
kk
22 u*vu*v

binary binary -tuples.  Computing -tuples.  Computing  only involves multiplying and dividing by certain single-variable only involves multiplying and dividing by certain single-variable  kk u*vu*v

polynomials of degree polynomials of degree  modulo 2.  With  modulo 2.  With  variables you wind up with  variables you wind up with -tuples but the arithmetic-tuples but the arithmetic  kk nn nknk(( ))

involves only involves only  work per operation. work per operation.    nknkOO(( ))
  
The upshot of this is that in stating PIT, we may suppose that the total degree The upshot of this is that in stating PIT, we may suppose that the total degree  of the polynomial formula of the polynomial formula  dd

 obeys  obeys .  If it doesn't, then we can scale up .  If it doesn't, then we can scale up  to  to  to make it so---unless the to make it so---unless the  ff xx ,, …… ,, xx(( 11 nn)) d d <<   ||FF|| FF FF''

degrees degrees  of the formulas  of the formulas  for each  for each  are horribly exponential.  This allows us to apply the following are horribly exponential.  This allows us to apply the following  ddnn ffnn nn
"strong form" of the "strong form" of the Schwartz-Zippel-(de Millo-Lipton) LemmaSchwartz-Zippel-(de Millo-Lipton) Lemma..
  
LemmaLemma: Take any finite subset : Take any finite subset  of the field  of the field  (if  (if  is already finite we can just take  is already finite we can just take ).  Let).  Let  SS FF FF S S ==   FF

 have total degree at most  have total degree at most .  Suppose .  Suppose  does not multiply out to  does not multiply out to .  Then.  Thenff xx ,, …… ,, xx(( 11 nn)) dd ff 00

..ff aa ,, …… ,, aa   ==  0 0   ≤≤   PrPraa ,…,a,…,a  ∈ S ∈ S11 nn
[[ (( 11 nn)) ]]

dd

||SS||
  
There is an alternative weaker form in which There is an alternative weaker form in which  is the maximum degree in any one of the  is the maximum degree in any one of the  variables and variables and  d'd' nn

the probability conclusion you get is the probability conclusion you get is .  The weaker form also holds over .  The weaker form also holds over  and  and  and other  and other ringsrings

  
≤≤   

d'nd'n

|S||S|
ZZ ZZmm

that are not that are not fieldsfields.  Note that the average degree of a variable is .  Note that the average degree of a variable is  so the numerator  so the numerator  is similar to just is similar to just  dd

nn
d'nd'n

, but because this defines , but because this defines  to be the max, not the average, the result you get is technically weaker to be the max, not the average, the result you get is technically weaker  dd d'd'
(but just as useful in most cases---this is how Debray gives it).  Note that I partner with Lipton; I helped(but just as useful in most cases---this is how Debray gives it).  Note that I partner with Lipton; I helped  
him explain athim explain at
  

https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
  
the story of how he and Rich de Millo originally had the weaker form in 1977, a year ahead of Jackthe story of how he and Rich de Millo originally had the weaker form in 1977, a year ahead of Jack  



Schwartz's stronger form with Richard Zippel in-between.  Moreover, I shared an office with Zippel atSchwartz's stronger form with Richard Zippel in-between.  Moreover, I shared an office with Zippel at  
Cornell for some months in 1986 (if I recall correctly).Cornell for some months in 1986 (if I recall correctly).    
  
CorollaryCorollary: : PITPIT (over any of  (over any of , , , or fields , or fields , even infinite fields) belongs to co-, even infinite fields) belongs to co- ..ZZ ZZmm FF RPRP

  
The basic fact underlying the proof is that a The basic fact underlying the proof is that a single-single-variable polynomial of degree variable polynomial of degree  has at most  has at most  roots. roots.    dd dd

The fact of having The fact of having  variables expands in the denominator and the numerator in a similar manner; variables expands in the denominator and the numerator in a similar manner;  nn

formally, this is shown by induction on formally, this is shown by induction on .  For those interested in the details,.  For those interested in the details,  nn
  
https://nickhar.wordpress.com/2012/02/01/lecture-9-polynomial-identity-testing-by-the-schwartz-zippel-lemma/https://nickhar.wordpress.com/2012/02/01/lecture-9-polynomial-identity-testing-by-the-schwartz-zippel-lemma/
  
also has a nice comparison of also has a nice comparison of PITPIT with the evaluates-to-zero problem. with the evaluates-to-zero problem.    


