
CSE491/596 Lecture Mon. 11/27/23: Quantum Circuits and Their Analysis
 
Theorem (cf. theorem 5.2 in section 5.3): Classical Boolean circuits can be efficiently simulated by 
quantum circuits that don't even do any superposition or entanglement.
 
The proof is basically that the Toffoli gate simulates NAND via  and NAND is a Tof x, y, 1  =   ∨  ( ) (x⏨ y⏨)

universal gate.  The extra lines for the constant 1 inputs also make the whole computation reversible.
 
Here is a sizable example of this theorem.  Consider the following circuit of NAND gates from the blog 
article "Implementing Logic Functions Using Only NAND or NOR Gates" by Max Maxfield:
 

 
 Here is the corresponding quantum circuit:
 

 
Note also that the initial three  gates effectively copy the Boolean values  so that they can CNOT a, b, c

be negated as  on the next three qubit lines.  This is covered in section 6.2, and the last three , ,a⏨b⏨c⏨
qubit lines exemplify the trick in section 6.1 of using  gates to effectively initialize them to  NOT 1

rather than .  Caveat: You can't copy an arbitrary quantum state using ---the No-Cloning 0 CNOT
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(We will later
mirror the gates
except the last
one giving the
function value d
in order to reset
the ancilla qubits
4--8 to , so0

that all qubits
except the last 
keep their given
basis values.)

https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/
https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/


Theorem mentioned in section 6.2 shows there is no way to do this in general.  But particular states in 
a known basis can be copied this way.
 
The "quantum extra", beginning with using the Hadamard gate to create superpositions, is what 
promises to take us beyond classical computing.
 
 
The Quantum Fourier Transform
 
Two other 2-qubit gates and their matrix and circuit representations are:

The  gate is symmetric: note that its results on  and on  are the same.  So are the  and CZ 01 10 CS

 gates, which have  and  in place of the .  For a general  matrix ,  is CT i 𝜔 =  e  =  i𝜋/4 i -1 r × r A CA

the  matrix given in block form as .  The circuit convention is to put a black dot on the 2r × 2r I 0

0 A
control qubit line and a vertical line extending to  in a box the target line(s).  Most applets make you A
do that with  as well as  and , but it is good to remember that these three (and further ones CZ CS CT

with roots of  at bottom right) are symmetric.  𝜔

 
Continuing the idea of the progression , , ,... to finer angles leads into the general CZ CS CT

construction of -sized circuits of basic gates for the -qubit Quantum Fourier Transform (QFT). O n2 n

 The usual recursive way to build it via  unary and binary gates uses controlled rotations by O n2

exponentially tiny angles.  This is already evident from the four-qubit illustration in the textbook (where 
the two gates on the left are :

Here  with  not  as with the -gate.  So  has a phase angle T  =  𝜋/8
1 0

0 𝜔'
𝜔' =  ei𝜋/8 𝜔 =  ei𝜋/4 T 𝜔'

one-sixteenth of a circle.  For  the next bank uses , then , and soon the angles would n =  5 1 / 32 1 / 64

be physically impossible so the gates could never be engineered.  

 

 

CZ =  

1 0 0 0

0 1 0 0

0 0 1 0
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SWAP =  

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



 
Those super-tiny angles are in the definition of the QFT itself.  For any , it takes  where n 𝜔  =  en

2𝜋i/N

.  With , the matrix together with its quantum coordinates is:N =  2n n =  3

 

 
For  we raise  with its tiny phase to exponentially many different powers.  How can this QFTN 𝜔N

possibly be feasible?  Leonid Levin among others raised this objection.  Here are several answers:

• Basic gates can fabricate quantum states having finer phases.  This is already hinted by the 
diagram in the case of .  Try composing  and .  The Solovay-HTH HTHT H* HTHT HTHT H* *

Kitaev theorem enables approximating operators with exponentially fine angles by polynomially 
many gates of phases that are multiples of  (using CNOT to extend this to multiple-qubit 𝜔

operators).
• The Toffoli and Hadamard gates by themselves, which have phases only  and , can +1 -1

simulate the real parts and imaginary parts of quantum computations separately via binary code, 
in a way that allows re-creating all measurement probabilities.  (This is undertaken in exercises 
7.8--7.14 with a preview in the solved exercise 3.8.) 

• The CNOT and Hadamard gates do not suffice for this, even when the so-called "phase gate" 

 

 

 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 1 1

001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i
011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1

101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1

5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j  =  𝜔[ ] ij



 is added.  The Pauli  gates and also  can be built from these, but S =  T  =  2 1 0

0 i
X, Y, Z CZ

quantum circuits of these gates can be simulated in deterministic ("classical") polynomial time.  
However,  suffices to build the Toffoli gate, per the diagram below (which is also a CS

presentation option).  So Hadamard +  is a universal set using only quarter phases.  CS
• The signature application of the QFT, which is Shor's algorithm showing that factoring belongs to 

, may only require coarsed-grained approximations to .  Indeed, the above theorem BQP QFTN

about Hadamard and Toffoli gates implies that they can efficiently represent the acceptance 
outcomes of any quantum circuit---though not its complex amplitudes.  This extends to the 
replacement of Toffoli by Controlled-  owing to the equation we have seen:S

For these reasons,   is considered feasible even though  is exponential.  Not every QFTN N =  2n

 unitary matrix  is feasible---the Solovay-Kitaev theorem relies on  having a small exact N ×  N U U
formulation to begin with.  But if we fix a finite universal gate set (such as , , H + T + CNOT H + Tof

or  above) and use only matrices that are compositions and tensor products of these gates, H + CS
then we can use the simple gate-counting metric as the main complexity measure.
 
 
Outputs and Measurements
 
There are various conventions about what it means for a family  of quantum circuits to compute a C[ n]

function  on , where  is an ensemble of functions  on  and each  computes .  I f 0, 1{ }* f fn 0, 1{ }n Cn fn

like supposing that  is coded in  where  depends only on  and giving  -many output f x( ) 0, 1{ }r r n Cn r
qubits separate from the  input qubits, plus some number  of ancilla qubits.  (It is traditional, IMHO n m
weirdly, to consider that the primordial input is always  and that for any other , NOT gates are 0n x
prepended onto the circuit for those lines  where .) i x  =  1i

 
For languages, this means that the yes/no verdict comes on qubit .  Many references say to n + 1

measure line  instead.  (Using a swap gate between lines  and  can show these conventions to 1 1 n + 1

be equivalent, but I prefer reserving lines  to  for potential use of the "copy-uncompute" trick, which is 1 n
covered in section 6.3 and is a presentation option.)   Even for languages, however, one evidently 
cannot get the most power if you need always to rig the circuit so that on any input , the x ∈  0, 1{ }n

output line always has a (standard-)basis value, i.e., is  with certainty or is  with certainty.  Instead, 0 1

one must measure it, whereupon the value  is given with some probability ,  with probability .  0 p 1 1 -  p
 

 

 



The math of measurements (at least of the kind of pure states we get in completely-specified circuits) is 
simple.  At the end we have a quantum state  of  qubits, counting the output and any ancilla 𝛹 n + r + m
lines.  It "is" a vector  where .  Numbering  in canonical v , v , … v  ∈  C( 1 2 Q) Q Q =  2n+r+m 0, 1{ }n+r+m

order as , an all-qubits measurement gives any  with probability .  If we focus on just z , … , z1 S zj |v |j
2

the  output lines, then any  occurs with probabilityr y ∈  0, 1{ }r

. |v |∑
 

j: z  agrees with y on the r output linesj

j
2

 
When  and  the sum is over all binary strings   that have a  in the corresponding r =  1 y =  0 zj 0

places.  It is a postulate of quantum mechanics that we could do the measurement in such a way that 
the new state  stays "coherent" on qubit lines outside the  lines that were measured, but we will not 𝛹' r
care about this---we will be OK doing an all-qubits measurement (which "collapses" the system down to 

 for whatever basis state  is yielded) and then re-starting the whole circuit to do multiple trials, if zj zj

necessary.  What can make them necessary is the simple "unamplified" definition of  along lines of BQP

the definition given for .  To simplify the notartion, let  denote the probability of measuring  on BPP px 1

the output qubit line.  The notion of uniformity is similar to that for ordinary Boolean circuits: it means 
that  can be written down in  (classical) time.Cn nO 1( )

 
Definition: A language  belongs to  if there is a uniform family  of polynomial-sized quantum L BQP C[ n]

circuits such that for all  and inputs ,n x ∈ 0, 1{ }n

 
x ∈  L ⟹  p  ≥  3 / 4;x

x ∉  L ⟹  p  ≤  1 / 4.x

 
With the help of ideas grouped under the term "principle of deferred measurement" (mentioned in 
section 6.6), the idea of amplifying the difference in probabilities by repeated trials and majority vote of 
the outcomes can be internalized within the circuits.  This needs polynomially more ancilla qubits but 
allows doing only one measurement, which will then be guaranteed to give the correct answer with 
probability supremely close to  rather than probability .  However, it is (IMHO) more helpful to think 1 3 / 4

instead of quantum circuits as objects that can be sampled, and that a final classical post-processing 
routine gives the final answer as a function of the results of the samples.  This is how Simon's 
algorithm, Shor's algorithm, and (general forms of) Grover's algorithm are usually conceived.  The 
same approach of assembling a value  from multiple sample results can likewise be used for g x( )

defining how functions  are computed.g
 
With that said, the idea of computing a function  with  represented literally within a quantum f x  =  y( ) y
(basis) state is often applied a different way.  Given a circuit  computing  on lines  C y n + 1, … , n + r
that way---and using "copy-uncompute" to restore  on lines ---make  by prepending  on x 1, … , n C' H⊗n

the first  lines.  Give   as the actual input.  The resulting state isn C' 0n

 

 

 



.s  =f
1

2n

∑
 

x ∈ 0,1{ }n

x f x( )

 
Although each individual term  is separable---indeed, it is the basis state  x f x( ) e ⊗ e  =  ex y xy

where ---the sum is usually majorly entangled.  Our text calls this the functional y = f x( )

superposition of  over the domain .  In Shor's algorithm for a product  of two f 0, 1{ }n M =  pq
primes, first a seed  is chosen randomly from the  numbers that are not a <  M 𝜌 =  p - 1 q - 1( )( )

multiples of  or .  Then  is the function , where  is redundantly allowed to go as high p q f x( ) a Mx mod x
as  with  being a power of  between  and .  That makes enough room for the Q - 1 Q 2 M2 2M2

periodicity of the powering mod  to make enough waves for the QFT to do what Joseph Fourier knew M
it would 198 years ago: it transforms the waves' period, which divides , into a peak.  Repeated runs 𝜌

and measurements eventually give enough information about  to infer  and .  𝜌 p q
 
Thus Shor's algorithm invokes both the "input , output " view of what a quantum circuit does and x f x( )

the randomized sampling view.  The latter is the external algorithm, and its input is not " " but rather , x C
which in turn comes from the factoring problem instance  and the random seed .  In lieu of covering M a
the full details in chapters 11 and 12, we can state:
 
Shor's Theorem: FACTORING is in .BQP

 
At present, I accept that  is feasible to build and the QFT is feasible to apply---at least with sufficient sf
approximation for Shor's algorithm to work.  However, I am chary of the account given under the Many 
Worlds Hypothesis.  As told by David Deutsch and others, each Hadamard gate branches into two 
universes.  If the  Hadamards stayed separate to make  pairs that might be reasonable, but building n n

 seems to entail piggy-backing them to make  universes, all harnessed together by the QFT.   sf 2n

 
 

 

 




