
CSE491/596 Lecture Friday 12/04: Quantum Computing II---Qubits and Quantum CircuitsCSE491/596 Lecture Friday 12/04: Quantum Computing II---Qubits and Quantum Circuits
  
[Based on https://cse.buffalo.edu/~regan/cse491596/CSE596lect112618.pdf but goes further.  The[Based on https://cse.buffalo.edu/~regan/cse491596/CSE596lect112618.pdf but goes further.  The  
break to Monday will be somewhere between the "Two Qubits" and "Three Qubits" sections.]break to Monday will be somewhere between the "Two Qubits" and "Three Qubits" sections.]
  
A A qubitqubit is a physical system whose  is a physical system whose statestate   is described by a pair  is described by a pair  of complex numbers such that of complex numbers such that  𝜙𝜙 aa,, bb(( ))

.  The components of the pair .  The components of the pair indexindex the  the basic outcomesbasic outcomes  and and .  There are two ways.  There are two ways  ||aa||   ++   ||bb||   ==  1 122 22 00  11

we can gain knowledge about the values we can gain knowledge about the values  and  and ::aa bb

  
• • We can We can prepareprepare the state from the known initial state  the state from the known initial state  by known quantum by known quantum  ee   ==   11,, 0000 (( ))

operations, which here can be represented by operations, which here can be represented by  matrices. matrices.2 2 ××  2 2

• • We can We can measuremeasure the state (with respect to these basic outcomes), in which case: the state (with respect to these basic outcomes), in which case:
– – We either We either observeobserve  , whereupon the state becomes , whereupon the state becomes , or we observe , or we observe , in which case the, in which case the  00 ee00 11

state becomes state becomes ..ee   ==   00,, 1111 (( ))

– – The probability of observing The probability of observing  is  is , of getting , of getting  is  is ..00 ||aa||22 11 ||bb||22

  
If both If both  and  and  are real numbers, then we can picture the qubit as a point on the unit circle in  are real numbers, then we can picture the qubit as a point on the unit circle in ::aa bb RR

22

  
For example, we can have For example, we can have .  Oops, not quite, because their squares add up to .  Oops, not quite, because their squares add up to , so what, so what  a a ==  b  b ==  1 1 22

we really mean is we really mean is   If we measure   If we measure , then we observe , then we observe   aa == bb == == 0.70710678...0.70710678...11 // 22 𝜋𝜋  ==   11,, 11
11

22
(( )) 00

and and  with equal probability  with equal probability .  Measuring this .  Measuring this  is like flipping a fair coin.  Another legal state is is like flipping a fair coin.  Another legal state is  11
11

22
𝜋𝜋

.  This gives the same probabilities, because .  This gives the same probabilities, because .  If all we can do is measure.  If all we can do is measure  𝜇𝜇  ==   11,, --11
11

22
(( )) --11   ==  1 1(( ))22

((in the in the , ,  basis basis), we can't tell the difference between whether the state is ), we can't tell the difference between whether the state is  or  or .  Note that we can.  Note that we can  00 11 𝜋𝜋 𝜇𝜇
prepare the prepare the  and  and  states by applying the Hadamard matrix  states by applying the Hadamard matrix  to  to  and  and ::𝜋𝜋 𝜇𝜇 HH 00 11
  

• • HHee   ==       ==       ==   𝜋𝜋00
11

22

11 11

11 --11

11

00

11

22

11

11

• • HHee   ==       ==       ==   𝜇𝜇11
11

22

11 11

11 --11

00

11

11

22

11

--11

  
Three other operators, named for the physicist Wolfgang Pauli, and their effects on states, are:Three other operators, named for the physicist Wolfgang Pauli, and their effects on states, are:

  

  

00,, 11(( ))

11,, 00(( ))aa

bb

aa,, bb(( ))

𝜃𝜃

aa||   ++   ||bb||   ==  1 1|| 22 22

a a ==   𝜃𝜃coscos

b b ==   𝜃𝜃sinsin

𝜇𝜇

𝜋𝜋



• • , aka. , aka. NOTNOT:  :  ; ; ..XX  ==   
00 11

11 00
XXee   ==     ==     ==   ee00

00 11

11 00

11

00

00

11
11 XXee   ==   ee11 00

• • :  :  ; ; ; ; ZZ  ==   
11 00

00 --11
ZZ𝜋𝜋  ==     ==     ==   𝜇𝜇

11 00

00 --11

11

11

11

22

11

22

11

--11
ZZ𝜇𝜇  ==   𝜋𝜋 ZZee   ==   ee ..00 00

• • :  :  ; ; ; ; ; ; ..    YY  ==   
00 --ii

ii 00
YYee   ==  i iee00 11 YYee   ==   -- iiee11 00 YY𝜋𝜋  ==     ==   -- ii𝜇𝜇

11

22

--ii

ii
YY𝜇𝜇  ==  i i𝜋𝜋

  
What can be confusing in the diagram is that we also habitually use the unit circle in What can be confusing in the diagram is that we also habitually use the unit circle in  to illustrate a to illustrate a  RR

22

single unit complex number single unit complex number , that is, an element of , that is, an element of  of magnitude  of magnitude .  We would then write.  We would then write  cc CC11 11

, and then , and then  is the same as  is the same as .  Our pair .  Our pair  of complex numbers, of complex numbers,  c c ==  a  a ++  bi bi ||cc||   ==  1 122 aa   ++  b b   ==  1 122 22 aa,, bb(( ))

however, is an element of however, is an element of , which is 4-dimensional if we tried to view it in real space., which is 4-dimensional if we tried to view it in real space.CC
22

  
• • My textbook with Lipton takes the attitude that there is enough similarity between My textbook with Lipton takes the attitude that there is enough similarity between  and  and  to to  RR22 CC22

visualize using the above diagram anyway---provided you handle complex numbers correctly ifvisualize using the above diagram anyway---provided you handle complex numbers correctly if  
and when they come up.  The similarities go into using the common general term and when they come up.  The similarities go into using the common general term Hilbert SpaceHilbert Space  
for for  and  and , though quantum physicists use the term most when the dimensionality is infinite., though quantum physicists use the term most when the dimensionality is infinite.RRnn CCnn

• • The fully correct diagram is being employed more by web tools, however, so we will take anThe fully correct diagram is being employed more by web tools, however, so we will take an  
excursion to discuss it.  (I added it to Part II, Chapter 14 for the textbook's new 2nd ed.)excursion to discuss it.  (I added it to Part II, Chapter 14 for the textbook's new 2nd ed.)

  
  
The Bloch SphereThe Bloch Sphere
  
There is a way to cut the dimensions down to There is a way to cut the dimensions down to .  The following definition will be useful for quantum.  The following definition will be useful for quantum  33

states of multiple qubits as well:states of multiple qubits as well:
  
DefinitionDefinition: Two quantum states : Two quantum states  are  are equivalentequivalent if there is a unit complex number  if there is a unit complex number  such that such that  𝜙𝜙,,𝜙'𝜙' cc

..    𝜙'𝜙'  ==   cc𝜙𝜙
  

For example, For example,  is equivalent to  is equivalent to , but neither is equivalent to , but neither is equivalent to , nor any of, nor any of  11

22
--11,, 11(( )) 11,, --11

11

22
(( )) 11,, 11

11

22
(( ))

these to our basic states these to our basic states  and  and .  In the line for the matrix .  In the line for the matrix , ,  is simply equivalent to just is simply equivalent to just  11,, 00(( )) 00,, 11(( )) YY iiee11
, ,  to  to , ,  to  to , and , and .  We could also regard .  We could also regard  as equivalent to as equivalent toee11 --iiee00 ee00 --ii𝜇𝜇 𝜇𝜇 ii𝜋𝜋 YY

,,iiYY  ==   
00 11

--11 00

which makes clearer that it is a combination of which makes clearer that it is a combination of  and  and  (indeed,  (indeed, ).  Finally, to).  Finally, to  XX ZZ iiYY  ==   ZXZX  ==   --XZXZ

finish the line for finish the line for , , ..  ZZ ZZee   ==   -- ee   ≡≡   ee11 11 11

  
Regarding our saying Regarding our saying equivalenceequivalence, note that, note that

,,    ==     ==     ==     ==     == a a --  bi  bi ==   
11

cc

11

aa ++ bibi

a a --  bi bi

aa ++ bibi aa -- bibi(( ))(( ))

a a --  bi bi

aa   ++  b b22 22

a a --  bi bi

11
cc⏨⏨

which is the which is the complex conjugatecomplex conjugate of  of  and is likewise a unit complex number.  Since  and is likewise a unit complex number.  Since  the the  cc 𝜙𝜙  ==   𝜙'𝜙'cc⏨⏨

relation is symmetric.  That the product of two unit complex numbers is a unit complex number makes itrelation is symmetric.  That the product of two unit complex numbers is a unit complex number makes it  
transitive, and being reflexive is immediate with transitive, and being reflexive is immediate with , so this is an equivalence relation., so this is an equivalence relation.c c ==  1 1

  

  



  
A unit complex number can be written in polar coordinates as A unit complex number can be written in polar coordinates as  for some angle  for some angle , which, which  c c ==  e ei𝛾i𝛾 𝛾𝛾
represents a "global phase."  Thus, dividing out by this equivalence relation emphasizes the represents a "global phase."  Thus, dividing out by this equivalence relation emphasizes the relativerelative  
phasephase   of the two components.  So let us write our original quantum state  of the two components.  So let us write our original quantum state  in polar coordinates as in polar coordinates as  𝜑𝜑 𝜙𝜙

 where now  where now  are real numbers between  are real numbers between  and  and .  Choose .  Choose , then, then  aeae ,, bebei𝛼i𝛼 i𝛽i𝛽 aa,, bb 00 11 𝛾 𝛾 ==   --𝛼𝛼

 with  with .  Since .  Since , the value of , the value of  is forced once we specify  is forced once we specify ..    cc𝜙𝜙  ==   aa,, bebei𝜑i𝜑 𝜑 𝜑 ==  𝛽  𝛽 --  𝛼 𝛼 aa   ++  b b   ==  1 122 22 bb aa

So So  and  and  are enough to specify the state. are enough to specify the state.    aa 𝜑𝜑
  
We can uniquely map points We can uniquely map points  to the sphere by treating  to the sphere by treating  as a longitude and  as a longitude and  (rather than  (rather than ) as) as  aa,,𝜑𝜑(( )) 𝜑𝜑 aa22 aa

a latitude where the north pole is a latitude where the north pole is , the equator is , the equator is , and the south pole is , and the south pole is .  Then the latitude gives.  Then the latitude gives  11 0.50.5 00

the probability of getting the outcome the probability of getting the outcome .  All states like .  All states like  and  and  that give equal probability of  that give equal probability of  and  and   00 𝜋𝜋 𝜇𝜇 00 11

fan out along the equator.  The north pole is fan out along the equator.  The north pole is  and the south pole is  and the south pole is .  Well, it's high time we give these.  Well, it's high time we give these  00 11
states their formal names using states their formal names using Dirac notationDirac notation::  
  

• •  is called  is called  and  and  is called  is called ..ee   ==   0000 00 ee   ==   1111 11

• •  is called  is called , the "plus" state., the "plus" state.11,, 11   ==     ++   
11

22
(( ))

11

22
00 11 ++

• •  is called  is called , the "minus" state., the "minus" state.11,, --11   ==     --   
11

22
(( ))

11

22
00 11 --

  
Here they all are, graphed on the Here they all are, graphed on the Bloch SphereBloch Sphere::
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Among web applets displaying Bloch spheres for qubits is https://quantum-circuit.com/home (freeAmong web applets displaying Bloch spheres for qubits is https://quantum-circuit.com/home (free  
registration required).  Here is its graph for the registration required).  Here is its graph for the  state.  It is more usual to show the  state.  It is more usual to show the  axis out axis out  ++ xx

toward the reader and toward the reader and  at right, but that is less convenient IMHO for picturing  at right, but that is less convenient IMHO for picturing  and  and ..yy ++ --

Some algorithms, however, are IMHO easier to picture using the original planar diagram:Some algorithms, however, are IMHO easier to picture using the original planar diagram:

For one thing, this makes it easier to tell that For one thing, this makes it easier to tell that  and  and  are orthogonal vectors, that  are orthogonal vectors, that  and  and  are are  00 11 ++ --

likewise orthogonal vectors, and that the orthonormal basis likewise orthogonal vectors, and that the orthonormal basis  is obtained by a linear is obtained by a linear  ,,++ --

transformation (indeed, a simple rotation) of the standard basis transformation (indeed, a simple rotation) of the standard basis ..    ,,00 11

  
A downside, however, is that this diagram gives extra points for equivalent space, whereas the BlochA downside, however, is that this diagram gives extra points for equivalent space, whereas the Bloch  
sphere is completely non-redundant.  The Bloch sphere is also "more real" than the way we usuallysphere is completely non-redundant.  The Bloch sphere is also "more real" than the way we usually  
graph complex numbers via Cartesian coordinates.  In fact, graph complex numbers via Cartesian coordinates.  In fact, every unitary every unitary  matrix  matrix  induces a induces a  22 ×× 22 UU

rotation of the Bloch sphere and hence fixes an axis, so the axes of the sphere are in 1-to-1rotation of the Bloch sphere and hence fixes an axis, so the axes of the sphere are in 1-to-1  
correspondence with lossless quantum operations on a single qubit.correspondence with lossless quantum operations on a single qubit.  Whereas, the planar diagram  Whereas, the planar diagram  
gives a cut-down picture of how gives a cut-down picture of how  acts as a rotation without fully showing you its axis. acts as a rotation without fully showing you its axis.HH

  

  

  ==   00,, 1111 (( ))

  ==   11,, 0000 (( ))

  ==   11,, 11++ (( ))
11

22
  ==   11,, --11-- (( ))

11

22



  
[There is optional reading for Dirac Notation and the Bloch Sphere, which I have posted to the non-[There is optional reading for Dirac Notation and the Bloch Sphere, which I have posted to the non-
public link https://cse.buffalo.edu/~regan/cse491596/LRQmitbook2pp131-147.pdf  I worry it is overkill,public link https://cse.buffalo.edu/~regan/cse491596/LRQmitbook2pp131-147.pdf  I worry it is overkill,  
and its illustration of "quarts" might confuse with what follows; I regard the above notes as enough.  Theand its illustration of "quarts" might confuse with what follows; I regard the above notes as enough.  The  
following section returns to chapters 3--4 of the text.]following section returns to chapters 3--4 of the text.]
  
  
Two Qubits Two Qubits [Based on [Based on https://cse.buffalo.edu/~regan/cse491596/CSE596lect112818.pdf]https://cse.buffalo.edu/~regan/cse491596/CSE596lect112818.pdf]
  
An An -qubit quantum state is denoted by a unit vector in -qubit quantum state is denoted by a unit vector in  where  where .  Thus, a 2-qubit state is.  Thus, a 2-qubit state is  nn CC

NN N N ==  2 2nn

represented by a unit vector in represented by a unit vector in .   That takes up .   That takes up  real dimensions, and even trying tricks as for the real dimensions, and even trying tricks as for the  CC44 88

Bloch Sphere would bring that down only to a Bloch Sphere would bring that down only to a -dimensional hypersurface in -dimensional hypersurface in .  Until we have a.  Until we have a  66 RR77

Hyper-Zoom able to help us visualize 7-dimensional space, we have to rely on linear algebra and someHyper-Zoom able to help us visualize 7-dimensional space, we have to rely on linear algebra and some  
general ideas shared by Hilbert Spaces whether real or complex.general ideas shared by Hilbert Spaces whether real or complex.
  
One of those ideas is the One of those ideas is the standard basisstandard basis.  In 4-space, this is given by the vectors:.  In 4-space, this is given by the vectors:
  

..ee   ==   11,, 00,, 00,, 00 ,,  e e   ==   00,, 11,, 00,, 00 ,,  e e   ==   00,, 00,, 11,, 00 ,,  e e   ==   00,, 00,, 00,, 1111 (( )) 22 (( )) 33 (( )) 44 (( ))

  
The indexing scheme for The indexing scheme for quantum coordinatesquantum coordinates changes the labels to come from  changes the labels to come from  instead of instead of  00,, 11{{ }}22

from from , using the canonical binary order , using the canonical binary order .  Then we have:.  Then we have:11,, 22,, 33,, 44{{ }} 0000,, 0101,, 1010,, 1111

  
..ee   ==   11,, 00,, 00,, 00 ,,  e e   ==   00,, 11,, 00,, 00 ,,  e e   ==   00,, 00,, 11,, 00 ,,  e e   ==   00,, 00,, 00,, 110000 (( )) 0101 (( )) 1010 (( )) 1111 (( ))

  
The big advantage is that these basis elements are all separable and the labels respect the tensorThe big advantage is that these basis elements are all separable and the labels respect the tensor  
products involved:products involved:
  

  ==  e e   ==   11,, 00,, 00,, 00   ==   11,, 00 ⊗⊗ 11,, 00   ==  e e   ⊗⊗  e e   ==   ⊗⊗   ==   0000 0000 (( )) (( )) (( )) 00 00 00 00 00 00

  ==  e e   ==   00,, 11,, 00,, 00   ==   11,, 00 ⊗⊗ 00,, 11   ==  e e   ⊗⊗  e e   ==   ⊗⊗   ==   0101 0101 (( )) (( )) (( )) 00 11 00 11 00 11

  ==  e e   ==   00,, 00,, 11,, 00   ==   00,, 11 ⊗⊗ 11,, 00   ==  e e   ⊗⊗  e e   ==   ⊗⊗   ==   1010 0000 (( )) (( )) (( )) 11 00 11 00 11 00

  ==  e e   ==   00,, 00,, 00,, 11   ==   00,, 11 ⊗⊗ 00,, 11   ==  e e   ⊗⊗  e e   ==   ⊗⊗   ==   1111 1111 (( )) (( )) (( )) 11 11 11 11 11 11

  
It is OK to picture the tensoring with row vectors, but because humanity chose to write matrix-vectorIt is OK to picture the tensoring with row vectors, but because humanity chose to write matrix-vector  
products as products as  rather than  rather than , they need to be treated as column vectors.  This will lead to cognitive, they need to be treated as column vectors.  This will lead to cognitive  MvMv vMvM

dissonance when we read quantum circuits left-to-right but have to compose matrices right-to-left.dissonance when we read quantum circuits left-to-right but have to compose matrices right-to-left.    
Lipton and I are curious whether a "non-handed" description of nature can work.Lipton and I are curious whether a "non-handed" description of nature can work.
  

With the "plus" and "minus" states, we also have (note With the "plus" and "minus" states, we also have (note )):)):11,, 11 ⊗⊗ 11,, 11 == 11,, 11 ⊗⊗ 11,, 11
11

22
(( ))

11

22
(( ))

11

22
(( )) ((

  

  ==   ⊗⊗   ==   11,,   1  1 ⊗⊗ 11,,   1  1   ==   11,,   1  1,,   1  1,,   1  1 ==++++ ++ ++
11

22
(( )) (( ))

11

22
(( ))

 +  +  +  +  +  + 

22

0000 0101 1010 1111

  ==   ⊗⊗   ==   11,,   1  1 ⊗⊗ 11,, --11   ==   11,, --11,,  1 1,, --11 ==++  -- ++ --
11

22
(( )) (( ))

11

22
(( ))

 -  -  +  +  -  - 

22

0000 0101 1010 1111

  

  



  ==   ⊗⊗   ==   11,, --11 ⊗⊗ 11,,   1  1     ==   11,,  1 1,, --11,, --11 ==--  ++ -- ++
11

22
(( )) (( ))

11

22
(( ))

 +  +  -  -  -  - 

22

0000 0101 1010 1111

  ==   ⊗⊗   ==   11,, --11 ⊗⊗ 11,, --11   ==   11,, --11,, --11,,  1 1 ==--  -- -- --
11

22
(( )) (( ))

11

22
(( ))

 -  -  -  -  +  + 

22

0000 0101 1010 1111

  
These four vectors are linearly independent and mutually orthogonal, so they form an orthonormalThese four vectors are linearly independent and mutually orthogonal, so they form an orthonormal  
basis.  We can map the standard 4-dimensional basis to this one by forming the target vectors into abasis.  We can map the standard 4-dimensional basis to this one by forming the target vectors into a  
matrix---happily the matrix is symmetric and real so "handedness" does not come into play:matrix---happily the matrix is symmetric and real so "handedness" does not come into play:
  

..  ==     ⊗⊗   ==   HH  ⊗⊗HH  ==   HH
11

22

11 11 11 11

11 --11 11 --11

11 11 --11 --11

11 --11 --11 11

11

22

11 11

11 --11

11 11

11 --11
⊗2⊗2

  
Well, this is the case Well, this is the case  of the Hadamard transform  of the Hadamard transform , about which more on Monday.  Also, about which more on Monday.  Also  m m ==  2 2 HH⊗m⊗m

note the following tensor products of note the following tensor products of  matrices: matrices:22 ×× 22

  

,,HH  ⊗⊗  I I  ==     ⊗⊗   ==
11

22

11 11

11 --11

11 00

00 11

11

22

11 00 11 00

00 11 00 11

11 00 --11 00

00 11 00 --11

  

..II  ⊗⊗   HH  ==       ⊗⊗     ==
11 00

00 11

11

22

11 11

11 --11

11

22

11 11 00 00

11 --11 00 00

00 00 11 11

00 00 11 --11

  
Some examples of states you can produce with these matrices are:Some examples of states you can produce with these matrices are:
  

  ==   ⊗⊗   ==   11,, 11 ⊗⊗ 11,, 00   == 11,, 00,, 11,, 00 ==++00 ++ 00
11

22
(( )) (( ))

11

22
(( ))

 +  + 0000 1010

22

  ==   ⊗⊗   ==   11,, 00 ⊗⊗ 11,, 11   ==   11,, 11,, 00,, 00 ==00 ++ 00 ++
11

22
(( )) (( ))

11

22
(( ))

 +  + 0000 0101

22

  
Meanwhile,Meanwhile,

  

  ==   ⊗⊗   ==   11,, 11 ⊗⊗ 00,, 11   == 00,, 11,, 00,, 11 ==++11 ++ 11
11

22
(( )) (( ))

11

22
(( ))

 +  + 0101 1111

22

  
can be gotten as can be gotten as  applied to the column vector  applied to the column vector .  However, the state.  However, the state  HH  ⊗⊗  I I 00,, 11,, 00,, 00   ==   (( ))TT 0101

, which we saw in the last lecture is entangled, cannot be gotten this way., which we saw in the last lecture is entangled, cannot be gotten this way.    11,, 00,, 00,, 11   ==   
11

22
(( ))

 +  + 0000 1111

22

Instead, it needs the help of a Instead, it needs the help of a  unitary matrix that is not a tensor product of two smaller matrices. unitary matrix that is not a tensor product of two smaller matrices.    44 ×× 44

The most omnipresent one of these is:The most omnipresent one of these is:
  

  

  



..    CNOTCNOT  ==   

11 00 00 00

00 11 00 00

00 00 00 11

00 00 11 00

  
Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis,Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis,  
the values are: the values are: , , ,,  CNOTCNOTee   ==   CNOTCNOT   ==   0000 0000 0000 CNOTCNOTee   ==   CNOTCNOT   ==   0101 0101 0101

, and , and .  We can get these.  We can get these  CNOTCNOTee   ==   CNOTCNOT   ==   1010 1010 1111 CNOTCNOTee   ==   CNOTCNOT   ==   1111 1111 1010

from the respective columns of the from the respective columns of the  matrix, and we can also label the quantum coordinates right matrix, and we can also label the quantum coordinates right  CNOTCNOT
on it:on it:
  

  
Because we multiply column vectors, the co-ordinates of the argument vector come in the top and goBecause we multiply column vectors, the co-ordinates of the argument vector come in the top and go  
out to the left.  If the first qubit is out to the left.  If the first qubit is , then the whole gate acts as the identity.  But if the first qubit is , then the whole gate acts as the identity.  But if the first qubit is ,,  00 11

then the basis value of the second qubit gets flipped---the same action as the then the basis value of the second qubit gets flipped---the same action as the NOTNOT gate  gate .  Hence the.  Hence the  XX

name Controlled-NOT, abbreviated name Controlled-NOT, abbreviated : the : the NOTNOT action is controlled by the first qubit.  The action action is controlled by the first qubit.  The action  CNOTCNOT

on a general 2-qubit quantum state on a general 2-qubit quantum state  is even easier to picture: is even easier to picture:𝜙 𝜙 ==   aa,, bb,, cc,, dd(( ))

  

..CNOTCNOT   ==   

aa

bb

cc

dd

aa

bb

dd

cc

  
All it does is switch the third and fourth components---of any 4-dim. state vector.  Hence, All it does is switch the third and fourth components---of any 4-dim. state vector.  Hence,  is a is a  CNOTCNOT
permutation gatepermutation gate and is entirely deterministic.  Permuting these two indices is exactly what we need to and is entirely deterministic.  Permuting these two indices is exactly what we need to  

transform the separable state transform the separable state  into the entangled state  into the entangled state .  Since we got the.  Since we got the  11,, 00,, 11,, 00
11

22
(( )) 11,, 00,, 00,, 11

11

22
(( ))

former state from former state from  applied to  applied to , the matris we want is, the matris we want isHH  ⊗⊗  I I ee0000
  

..CNOT CNOT ⋅⋅   HH  ⊗⊗  I I   ==   ⋅⋅(( ))

11 00 00 00

00 11 00 00

00 00 00 11

00 00 11 00

  ==   
11

22

11 00 11 00

00 11 00 11

11 00 --11 00

00 11 00 --11

11

22

11 00 11 00

00 11 00 11

00 11 00 --11

11 00 --11 00

  

  

  0000 0101 1010 1111

0000 11 00 00 00

0101 00 11 00 00

1010 00 00 00 11

1111 00 00 11 00



  
We can see the result coming from the first column.  When we do a quantum circuit left-to-right,We can see the result coming from the first column.  When we do a quantum circuit left-to-right,  
however, the however, the  part comes first on the left.  The symbol for a  part comes first on the left.  The symbol for a CNOTCNOT gate is to use a black dot to gate is to use a black dot to  HH  ⊗⊗  I I(( ))

represent the control on the represent the control on the source qubitsource qubit and  and  (which I have used as a symbol for XOR) on the  (which I have used as a symbol for XOR) on the targettarget  ⊕⊕

qubitqubit.  This is more easily pictured by a quantum circuit diagram:.  This is more easily pictured by a quantum circuit diagram:

  

  


