
CSE491/596 Lecture Mon. 12/04/23: Small-Scale Quantum Applications
 
David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing 
while I was a graduate student and he was a postdoc at Oxford in the mid-1980s.  At first, he claimed 
quantum computers could solve the Halting Problem in finite time.  Fellows of Oxford's Mathematical 
Institute refuted the claim.  But it was not crazy: a year ago it was proved that a binary quantum system 
of "interactive provers" can (kind-of-)solve the Halting Problem in finite time.  (My review of the paper is 
at https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/)  Per my memory of 
observing some meetings about it, the gap in Deutsch's argument had to do with properties of 
probability measures based on infinite binary sequences. 
 
So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that 
quantum computers can do and classical ones cannot.  (Well, unless the playing field is leveled for 
them...but before we argue about it, let's see the task.)  
 
 
Deutsch's Algorithm
 
The task is a learning problem, a kind of interaction we haven't covered until this last day.  Instead of 
"input , compute , a learning problem is to determine facts about an initially-unknown entity x y =  f x "( )

 that you can query.  f
 

1. Oracle Turing machines give a classic way to define this kind of problem.  For oracle functions 
 or languages  drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM  that on input  (for large enough ) can distinguish what  is in time M 0n n A

(say) polynomial in ?  The computation  can learn about  by making queries  on n M 0A n A y

selected strings  and observing the answers .  y A y( )

2. One can also define oracle circuits that have special oracle gates with some number  of m

input wires and enough output wires to give the answer  on any .f y( ) y ∈  0, 1{ }m

3. An ordinary electrical test kit behaves that way.  It is a circuit with a place(s) for you to insert one 
or more (possibly-defective) electrical components .  The test results should diagnose A

electrical facts about .A
4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms 

work this way.  They involve an oracle function  given in reversible form f :  0, 1  0, 1{ }n → { }r

as the function defined by:F : 0, 1  0, 1  { }n+r → { }n+r

 
. F x, z  =  x, f x  ⊕  z( ) ( ( ) )

 
Usually  is  and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

.  In the simplest case ,  is a two-(qu)bit function.  Some examples:xf x( ) n =  r =  1 F
 

• If  is the identity function, , then .f f x  =  x( ) F x, z  = x, x⊕ z  =  CNOT x, z  ( ) ( ) ( )

 

 



• If , then : , , , .f x = ¬x( ) F x, z = x, x ↔ z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 10( ) F 11 = 11( )

• If  is always false, i.e., , then  is the identity function.f f x  =  0( ) F

• If , then , so , , , f x = 1( ) F x, z = x, ¬z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 11( ) F 11 = 10.( )

 
These are all deterministic as functions of two-qubit basis states, so they permute the quantum 
coordinates , , , and .  Recall that  gives the permutation that swaps 1 = 00 2 = 01 3 = 10 4 = 11 CNOT

the coordinates 3 and 4, that is,  in swap notation.  In full, we have:CNOT =  3 4( )

 
,    ,    , .F  =  3 4id ( ) F  =  1 2¬ ( ) F  =  0 ()    F  =  1 2 3 41 ( )( )

 
The functions  and  are constant.  The identity and  functions have one true and f x  =  0( ) f x  =  1( ) ¬

one false value each, so they balance values of  and .  The question posed by Deutsch is:0 1

 
How many queries are needed to tell whether  is constant from whether  is balanced?f f

 
If we just think of , suppose we try the query  and ask for .  If we get the answer "f y =  0 f y( )

 then it  could be constant-false, but  could also be the balanced identity function.  The f 0  =  0"( ) f f

answer  would leave both constant-true and negation as possibilities.  Likewise if we try f 0  =  1( )

.  The first point is that this impossibility of hitting things with one query carries forward to the y =  1

way we have to modify the problem for quantum:
 

How many queries are needed to tell  apart from ?F  or F( id ¬) F  or F( 0 1)

 
It seems like we have more of a chance because now we can query two things: , , , or .  Or in 00 01 10 11

the permutation view, we can query , , , or .  The problem is that the range of answers we y =  1 2 3 4

can get is too limited for this to help.   and  can only be  ro ;  and  can only be  or F 1( ) F 2( ) 1 2 F 3( ) F 4( ) 3

.  So suppose you query  and get the answer .  Then  could be  or  could be .  The 4 y =  3 4 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a 
straight and a cross:
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A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and 
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit 
after a measurement.  The input is not  but instead ; that is, the ancilla is initialized to , not to 00 01 1

.  Here is the wavefront ("maze") diagram of how it works:0

 
There is, IMHO, an "unfair" aspect of the comparison.  The classical algorithm is being allowed to 
evaluate the oracle only at basis vectors.  The quantum algorithm gets to evaluate it at a linear 
combination.  We can represent this state using the Dirac notation from Chapter 14 as
 

 =   -   +   -  + -
1

2
00 01 10 11

 
If we do the kind of linear extension of Boolean logic that was covered as the "Binary Linear Equations" 
presentation option, then we can solve the problem in one shot classically by evaluating at the point 

 and seeing where the  signs end up in the resulting vector.  FYI: 1, -1, 1, -1( ) -
https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/  
 
 
Superdense Coding
 
It is easy to rig cases  where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3

measuring both qubits.  Just define , for instance.  "Superdense coding" is a case where the F 00  =  ii( )

rigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit of 
communication.  This is impossible by the following theorem:
 
Holevo's Theorem: It is not possible to extract more than  bits of classical information from any -q q
qubit quantum state.
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The most important case where this "bites" IMHO is with graph states: You can input  bits of ∼ n
1

2

2

information by choosing the  gates for edges of an undirected -vertex graph  in a graph-state CZ n G

circuit  on  qubits, one for each vertex. But you can only get  bits of information out by measuring. CG n n

 Hence graph-state encoding is majorly lossy and is often used only for special classes of graphs that 
already have low information content, such as "grid graphs."
 
The "cheat" in superdense coding is that the communicating parties "Alice" and "Bob" exchange 1 bit of 
information beforehand in order to set them up with an entangled qubit pair.  Here is their circuit:

 
The opening Hadamard and CNOT set up the entangled pair.  Alice then chooses one of the four Pauli 
operators for the unknown operation in the middle.  After the second CNOT, she applies Hadamard to 
her qubit, measures, and sends the result to Bob.  Bob then measures his qubit, and is able to infer 
which of the four operators Alice used.  Well, he got a qubit from Alice to begin with, and even though it 
was before Alice made her 2-bit choice at the "?", it counts as 2 bits of "contact" anyway.
 
Even after the "magic" is explained away, this remains a nice illustration of a Deutsch-style learning 
problem using the four Pauli matrices.  We want to identify one of the following four possibilities exactly 
by the results of two qubits.
 

 
This time the input is .  To work it out via wavefronts (the figure below is left with  in the 00 XZ⊗ I

middle, but all four will be exemplified):
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[Lecture stopped short of trying to cover quantum teleportation on Monday and also promised to say 
more about the setup of "superdense coding" as to why it seems to give something for nothing.  
Between then and Wednesday I also showed the following big Hadamard tarnsform matrix, so as to set 

up the identity , where  is the "Boolean inner product" of H x, y  =  -1[ ] ( )x•y x • y = x ⋅ y  2∑
 

i i i mod

the equal-length binary strings  and .]x y
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H 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1

0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1

1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v  =  -1[ ] ( )u•v


