CSE 596: Introduction to Theory of Computation

Quantum Computation III

Kelin Luo

Institute of Computer Science University of Bonn, Germany kluo@uni-bonn.de

Content

• Recall: Single Qubit and Operator Matrices

The Bloch Sphere

Two Qubits

Three Qubits and More

Content

• Recall: Qubits and Matrices

The Bloch Sphere

Two Qubits

Three Qubits and More

Recall: qubits and Dirac notation

• A qubit in state 0, also write as $|0\rangle$ (Dirac notation):

$$e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• A qubit in state 1, also write as |1>:

$$e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• A qubit in a superposition state is described by:

$$\binom{a}{b} \text{ with } |a|^2 + |b|^2 = 1$$

also write as $a | 0 \rangle + b | 1 \rangle$.

Recall: basic arithmetic operations

• Matrix multiplication:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$$

• Tensor products:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \begin{pmatrix} 1 \\ 0 \end{pmatrix} & b \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ c \begin{pmatrix} 1 \\ 0 \end{pmatrix} & d \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 0 \\ c & d \\ 0 & 0 \end{pmatrix}$$

Recall: from a single bit to multiple bits

Examples:

$$|00\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$

$$|01\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$

$$|1111\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Recall: unitary matrices (operators / gates)

• Hadamard matrix:
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
• Pauli matrices
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• Identity matrix:
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Content

• Recall: Qubits and Circuits

The Bloch Sphere

Two Qubits

Three Qubits and More

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

• The principle is that a unit complex number is only a "global phase difference" which is physically arbitrary and doesn't matter.

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

• The principle is that a unit complex number is only a "global phase difference" which is physically arbitrary and doesn't matter.

Example:

$$\frac{1}{\sqrt{2}}(-1,1)$$
 is equivalent to $\frac{1}{\sqrt{2}}(1,-1)$

 ie_1 is equivalent to e_1 ; $-ie_0$ is equivalent to e_0

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

Complex conjugate of *c*:

$$\frac{1}{c} = \frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a-bi}{1} = a-bi = \bar{c}$$

is also a unit complex number.

Since $\phi = \bar{c}\phi'$, then $\phi' = c\phi$.

[Equivalence relation] transitive, reflexive, and symmetric

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

Unit complex number in polar coordinate: $c = e^{i\gamma}$.

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

Unit complex number in polar coordinate: $c = e^{i\gamma}$.

A quantum state ϕ in polar coordinates: $(ae^{i\alpha}, be^{i\beta})$.

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

Unit complex number in polar coordinate: $c = e^{i\gamma}$.

A quantum state ϕ in polar coordinates: $(ae^{i\alpha}, be^{i\beta})$.

Choose $\gamma = -\alpha$ then: $c\phi = (a, be^{i\varphi})$ with $\varphi = \beta - \alpha$.

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

Unit complex number in polar coordinate: $c = e^{i\gamma}$.

A quantum state ϕ in polar coordinates: $(ae^{i\alpha}, be^{i\beta})$.

Choose $\gamma = -\alpha$ then: $c\phi = (a, be^{i\varphi})$ with $\varphi = \beta - \alpha$.

Since $a^2 + b^2 = 1$, b is fixed once we specify a.

Definition (Equivalent)

Two quantum states ϕ , ϕ' are equivalent if there is a **unit** complex number c such that

$$\phi' = c\phi$$
.

Unit complex number in polar coordinate: $c = e^{i\gamma}$.

A quantum state ϕ in polar coordinates: $(ae^{i\alpha}, be^{i\beta})$.

Choose $\gamma = -\alpha$ then: $c\phi = (a, be^{i\varphi})$ with $\varphi = \beta - \alpha$.

Since $a^2 + b^2 = 1$, b is fixed once we specify a.

So a and φ are enough to specify a state.

So a and φ are enough to specify a state.

Comparing Cartesian and Bloch

Cartesian: $\cos^2\theta$ is the probability of a measurement giving 0 $\sin^2\theta$ the probability of getting 1 Right angles are orthogonal

Bloch: the **latitude** is the probability of getting 0
the north pole has latitude 1 and the south pole has latitude 0
Opposite poles are orthogonal.

Comparing Cartesian and Bloch

Here they all are, graphed on the **Bloch Sphere**:

Bloch: All points at the Bloch equator have equal probability of 0 and 1.

 $|+\rangle$ and $|-\rangle$ are different quantum states with same outcome probabilities.

state
$$\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 is not considered to be a different state from $|-\rangle$.

Two More Matrices (operators / gates)

$$S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$S^4 = I$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

$$T^8 = I$$

Two More Matrices (operators / gates)

$$S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$S^4 = I$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

$$T^8 = I$$

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \qquad \theta = \pi/2, \ \pi/4, \ \pi/8, \dots \qquad \theta \text{-angled phase gates}$$

Content

• Recall: Qubits and Circuits

The Bloch Sphere

Two Qubits

Three Qubits and More

Two qubits: basis states

One qubit state: $|0\rangle$, $|1\rangle$

$$e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Two qubits: basis states

One qubit state: $|0\rangle$, $|1\rangle$

$$e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Two qubits state: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ or $e_{00}, e_{01}, e_{10}, e_{11}$

$$e_{00} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad e_{01} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad e_{10} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad e_{11} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$e_{00} = e_0 \otimes e_0$$
 $e_{01} = e_0 \otimes e_1$ $e_{10} = e_1 \otimes e_0$ $e_{11} = e_1 \otimes e_1$

$$|00\rangle = |0\rangle \otimes |0\rangle \quad |01\rangle = |0\rangle \otimes |1\rangle \quad |10\rangle = |1\rangle \otimes |0\rangle \quad |11\rangle = |1\rangle \otimes |1\rangle$$

Two qubits state: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ or $e_{00}, e_{01}, e_{10}, e_{11}$

$$e_{00} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad e_{01} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad e_{10} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad e_{11} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Two qubits state: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ or $e_{00}, e_{01}, e_{10}, e_{11}$

$$e_{00} = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \qquad e_{01} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \qquad e_{10} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \qquad e_{11} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Another set of basis states: from "plus" and "minus" states

$$|++\rangle = |+\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

$$|+-\rangle = |+\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2}$$

$$|-+\rangle = |-\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$$

$$|--\rangle = |-\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle - |01\rangle - |10\rangle + |11\rangle}{2}$$

More two qubits states: "plus" and "minus" states

$$|++\rangle = |+\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

$$|+-\rangle = |+\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2}$$

$$|-+\rangle = |-\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$$

$$|--\rangle = |-\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle - |01\rangle - |10\rangle + |11\rangle}{2}$$

More two qubits states: "plus" and "minus" states

$$|++\rangle = |+\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

$$|+-\rangle = |+\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2}$$

$$|-+\rangle = |-\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$$

$$|--\rangle = |-\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle - |01\rangle - |10\rangle + |11\rangle}{2}$$

Orthonormal basis: Linearly independent and mutually orthogonal vectors.

More two qubits states: "plus" and "minus" states

$$|++\rangle = |+\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

$$|+-\rangle = |+\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2}$$

$$|-+\rangle = |-\rangle \otimes |+\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$$

$$|--\rangle = |-\rangle \otimes |-\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|00\rangle - |01\rangle - |10\rangle + |11\rangle}{2}$$

Orthonormal basis: Linearly independent and mutually orthogonal vectors.

2-qubit gate: from single-qubit gates

Quantum circuit: go left-to-right, like music on a staff, but we apply matrices to vectors going right-to-left.

Example: $(H \otimes I) |01\rangle = (H |0\rangle) \otimes (I |1\rangle) = |+\rangle \otimes |1\rangle$

2-qubit gate: CNOT gate

If the first qubit is 0, then the whole gate acts as the identity;

If the first qubit is 1, then the basis value of the second qubits flipped (Not gate X)

What's the output?

$$z_1 = \mathbf{H}x_1$$

$$z_2 = x_2 \oplus z_1$$
 Symbolic outputs

$$H \otimes I = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$H \otimes I = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$z = (H \otimes I)e_{00} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} |+\rangle \otimes |0\rangle$$

$$z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} |+\rangle \otimes |0\rangle$$

$$z' = \text{CNOT } z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Example: H gate and CNOT gate

For example, if $|x_1x_2\rangle = e_{00}$,

$$z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} |+\rangle \otimes |0\rangle$$

$$z' = \text{CNOT } z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

Example: H gate and CNOT gate

For example, if $|x_1x_2\rangle = e_{00}$,

$$z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} |+\rangle \otimes |0\rangle$$

Separatable

$$z' = \text{CNOT } z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$
 Entangled

Example: H gate and CNOT gate

$$z' = = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Entangled

Definition: A quantum state is **entangled** if it cannot be written as a tensor product of smaller states.

https://wybiral.github.io/quantum/

https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5D%7D

2-qubit gate: CZ gate

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

If both bits are 1, flip the sign; Else, do nothing

2-qubit gate: CZ gate

Example:

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad CZ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad CZ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

 $CZ | 01 \rangle = | 01 \rangle$ $CZ | 11 \rangle = | 1 \rangle \otimes (-| 1 \rangle)$ $= |1\rangle \otimes e^{i\pi} |1\rangle$ If both bits are 1, flip the sign; Else, do nothing

2-qubit gate: CZ gate

Example:

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad CZ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad CZ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

If both bits are 1, flip the sign; Else, do nothing

$$CZ |01\rangle = |01\rangle$$
 $CZ |11\rangle = |1\rangle \otimes (-|1\rangle)$
= $|1\rangle \otimes e^{i\pi} |1\rangle$

Symmetric

Other 2-qubit (symmetric) gates: CA gate

$$CA = \begin{pmatrix} I & 0 \\ 0 & A \end{pmatrix} \qquad 2r \times 2r \text{ matrix for general } r \times r \text{ matrix } A$$

Other 2-qubit (symmetric) gates: CA gate

$$CA = \begin{pmatrix} I & 0 \\ 0 & A \end{pmatrix}$$

 $CA = \begin{pmatrix} I & 0 \\ 0 & A \end{pmatrix}$ $2r \times 2r$ matrix for general $r \times r$ matrix A

Example:

$$CS = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$$

$$CS \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad CS \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ i \end{pmatrix} \\
CS | 01 \rangle = | 01 \rangle \qquad CS | 11 \rangle = | 1 \rangle \otimes (i | 1 \rangle) \\
= | 1 \rangle \otimes e^{i\pi/2} | 1 \rangle$$

Other 2-qubit (symmetric) gates: CA gate

$$CA = \begin{pmatrix} I & 0 \\ 0 & A \end{pmatrix}$$

 $2r \times 2r$ matrix for general $r \times r$ matrix A

Example:

$$CS = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$$

$$CT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\pi/4} \end{pmatrix}$$

$$CS \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad
CS \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ i \end{pmatrix}$$

$$CS | 01 \rangle = | 01 \rangle \qquad
CS | 11 \rangle = | 1 \rangle 6$$

$$CS |01\rangle = |01\rangle$$

$$\mathbf{CT} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$CT|01\rangle = |01\rangle$$

$$CS \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ i \end{pmatrix}$$

$$CS | 11 \rangle = | 1 \rangle \otimes (i | 1 \rangle)$$
$$= | 1 \rangle \otimes e^{i\pi/2} | 1 \rangle$$

$$\operatorname{CT} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad \operatorname{CT} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ e^{i\pi/4} \end{pmatrix}$$

$$CT |01\rangle = |01\rangle$$
 $CT |11\rangle = |1\rangle \otimes e^{i\pi/4} |1\rangle$

2-qubit gate: SWAP gate

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2-qubit gate: SWAP gate

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad SWAP \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad SWAP \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$SWAP |01\rangle = |10\rangle \qquad SWAP |10\rangle = |01\rangle$$

Content

• Recall: Qubits and Circuits

The Bloch Sphere

Two Qubits

Three Qubits and More

More qubits, basic basis

Three qubits state: $|000\rangle$, $|001\rangle$, $|010\rangle$, ...

Four qubits state: $|0000\rangle$, $|0001\rangle$, $|0010\rangle$, ...

n qubits state: 2^n basic or standard states

3-qubit gate: Toffoli gate (Tof)

Toffoli gate

If the first two qubit are 1, then the basis value of the **third** qubits flipped Otherwise, the whole gate acts as the identity;

3-qubit gate: toffoli gate (Tof)

$$Tof = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

3-qubit gate: toffoli gate (Tof)

3-qubit gate: toffoli gate (Tof)

Toffoli gate

Example:

3-qubit gate: Toffoli gate (Tof)

Toffoli gate

What's the output?

$$z_1 = x_1$$

$$z_2 = x_2$$

$$z_3 = x_3 \oplus (x_1 \land x_2)$$
Symbolic outputs

3-qubit gate: Toffoli gate (Tof)

Toffoli gate

What's the output?

$$z_1 = x_1$$

$$z_2 = x_2$$

$$z_3 = |1\rangle \oplus (x_1 \land x_2) = \neg(x_1 \land x_2) = \text{NAND}(x_1, x_2)$$

Theorem

For fully time-constructible t(n) between linear and exponential, $DTIME[t(n)] \subseteq DQ[\tilde{O}(t(n))]$

Hadamard is the only **quantum-nondeterministic** gate one needs to add in order to extend the notion of *classical-feasible* to *quantum-feasible*.

The main point of the next two lectures, focusing on chapters 7 and 8 of the text, is to show the extra powers that this gives.

Toffoli gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Only need to look at the effect on basis states.

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 1:
$$x_1 = 0$$

H S Z S I H

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 1:
$$x_1 = 0$$

Toffoli gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 1: $x_1 = 0$

Toffoli gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 1: $x_1 = 0$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 2:
$$x_1 = 1$$

$$x_2 = 0$$
H
Z
S
H

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 2:
$$x_1 = 1$$

$$x_2 = 0$$

$$ZSS = I \quad HH = I$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 2:
$$x_1 = 1$$
 $x_2 = 0$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 2:
$$x_1 = 1$$

$$x_2 = 1$$
H S T S H

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Case 2:
$$x_1 = 1$$

$$x_2 = 1$$

$$HSSH = HZH = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X \text{ Flip } x_3$$

Quantum computation

Quantum algorithm applies a series of unitary matrices to a start vector.

- Keep the number k of arguments for any operation to a constant!
- Any unitary matrix B of dimension 2^k with k = 1, 2, 3 is **feasible**.
- Gates involving with more qubits is OK if they can be built up out of small gates

Quantum computation

Definition

A quantum computation C on s qubits is **feasible** provided,

$$C = U_t U_{t-1} \dots U_1$$

Where each U_i is feasible operation, and s and t are bounded by a polynomial in the designated number n of input qubits.

Example: H gates

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\mathsf{H}^{\otimes 4} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

A 16×16 matrix

Example: H gates and CZ gates

A 16×16 matrix multiple a 16×16 matrix

Example: H gates and CZ gates

A 16×16 matrix multiple four 16×16 matrix

Example: H gates and CZ gates

A 16×16 matrix multiple four 16×16 matrix multiple a 16×16 matrix

Example: quantum Fourier transform (QFT)

The n-qubit quantum Fourier transform (QFT) can be built up of $O(n^2)$ smaller gates.

Example: n = 4, $N = 2^4$

$$T_{\pi/8} = \begin{pmatrix} 1 & 0 \\ 0 & w' \end{pmatrix} \text{ with } w' = e^{i\pi/8}$$

Thank you!