## CSE 596: Introduction to Theory of Computation

## Quantum Computation III

Kelin Luo

Institute of Computer Science
University of Bonn, Germany
kluo@uni-bonn.de

## Content

- Recall: Single Qubit and Operator Matrices
- The Bloch Sphere
- Two Qubits
- Three Qubits and More


## Content

- Recall: Qubits and Matrices
- The Bloch Sphere
- Two Qubits
- Three Qubits and More


## Recall: qubits and Dirac notation

- A qubit in state 0 , also write as $|0\rangle$ (Dirac notation):

$$
e_{0}=\binom{1}{0}
$$

- A qubit in state 1 , also write as $|1\rangle$ :

$$
e_{1}=\binom{0}{1}
$$

- A qubit in a superposition state is described by:

$$
\binom{a}{b} \text { with }|a|^{2}+|b|^{2}=1
$$

also write as $a|0\rangle+b|1\rangle$.


## Recall: basic arithmetic operations

- Matrix multiplication:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{0}=\binom{a}{c}
$$

- Tensor products:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \otimes\binom{1}{0}=\left(\begin{array}{ll}
a\binom{1}{0} & b\binom{1}{0} \\
c\binom{1}{0} & d\binom{1}{0}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & 0 \\
c & d \\
0 & 0
\end{array}\right)
$$

## Recall: from a single bit to multiple bits

Examples:

$$
|00\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad|01\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
|111\rangle=\binom{0}{1} \otimes\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

## Recall: unitary matrices (operators / gates)

- Hadamard matrix: $\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$\left(\begin{array}{l}\left.\mathrm{X}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), ~\left(\begin{array}{ll}\end{array}\right) . \begin{array}{ll}\end{array}\right)\end{array}\right.$
- Pauli matrices $\left\{\begin{array}{l}Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) ~\end{array}\right.$

$$
\mathrm{Y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Identity matrix: $\quad \mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$


## Content

- Recall: Qubits and Circuits
- The Bloch Sphere
- Two Qubits
- Three Qubits and More


## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

- The principle is that a unit complex number is only a "global phase difference" which is physically arbitrary and doesn't matter.


## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

- The principle is that a unit complex number is only a "global phase difference" which is physically arbitrary and doesn't matter.

Example:
$\frac{1}{\sqrt{2}}(-1,1)$ is equivalent to $\frac{1}{\sqrt{2}}(1,-1)$
$i e_{1}$ is equivalent to $e_{1} ;-i e_{0}$ is equivalent to $e_{0}$

## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

Complex conjugate of $c$ :

$$
\frac{1}{c}=\frac{1}{a+b i}=\frac{a-b i}{(a+b i)(a-b i)}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a-b i}{1}=a-b i=\bar{c}
$$

is also a unit complex number.
Since $\phi=\bar{c} \phi^{\prime}$, then $\phi^{\prime}=\mathrm{c} \phi$.
[Equivalence relation]
transitive, reflexive, and symmetric

## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

Unit complex number in polar coordinate: $c=e^{i \gamma}$.

## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

Unit complex number in polar coordinate: $c=e^{i \gamma}$.
A quantum state $\phi$ in polar coordinates: $\left(a e^{i \alpha}, b e^{i \beta}\right)$.

## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

Unit complex number in polar coordinate: $c=e^{i \gamma}$.
A quantum state $\phi$ in polar coordinates: $\left(a e^{i \alpha}, b e^{i \beta}\right)$.
Choose $\gamma=-\alpha$ then: $c \phi=\left(a, b e^{i \varphi}\right)$ with $\varphi=\beta-\alpha$.

## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

Unit complex number in polar coordinate: $c=e^{i \gamma}$.
A quantum state $\phi$ in polar coordinates: $\left(a e^{i \alpha}, b e^{i \beta}\right)$.
Choose $\gamma=-\alpha$ then: $c \phi=\left(a, b e^{i \varphi}\right)$ with $\varphi=\beta-\alpha$.
Since $a^{2}+b^{2}=1, \mathrm{~b}$ is fixed once we specify $a$.

## Bloch sphere

## Definition (Equivalent)

Two quantum states $\phi, \phi^{\prime}$ are equivalent if there is a unit complex number c such that

$$
\phi^{\prime}=\mathrm{c} \phi .
$$

Unit complex number in polar coordinate: $c=e^{i \gamma}$.
A quantum state $\phi$ in polar coordinates: $\left(a e^{i \alpha}, b e^{i \beta}\right)$.
Choose $\gamma=-\alpha$ then: $c \phi=\left(a, b e^{i \varphi}\right)$ with $\varphi=\beta-\alpha$.
Since $a^{2}+b^{2}=1, \mathrm{~b}$ is fixed once we specify $a$.
So $a$ and $\varphi$ are enough to specify a state.

## Bloch sphere

## So $a$ and $\varphi$ are enough to specify a state.

Here they all are, graphed on the Bloch Sphere:


## Comparing Cartesian and Bloch



Cartesian: $\cos ^{2} \theta$ is the probability of a measurement giving 0 $\sin ^{2} \theta$ the probability of getting 1
Right angles are orthogonal
Bloch: the latitude is the probability of getting 0 the north pole has latitude 1 and the south pole has latitude 0 Opposite poles are orthogonal.

## Comparing Cartesian and Bloch

## Here they all are, graphed on the Bloch Sphere



Bloch: All points at the Bloch equator have equal probability of 0 and 1 .

state $\frac{1}{\sqrt{2}}\binom{-1}{1}$ is not considered to be a different state from $|-\rangle$.

## Two More Matrices (operators / gates)

$$
\begin{array}{ll}
\mathrm{S}=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / 2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) & \mathrm{S}^{4}=1 \\
\mathrm{~T}=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) & \mathrm{T}^{8}=1
\end{array}
$$

## Two More Matrices (operators / gates)

$$
\begin{array}{ll}
\mathrm{S}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) & \mathrm{S}^{4}=\mathrm{I} \\
\mathrm{~T}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) & \mathrm{T}^{8}=\mathrm{I}
\end{array}
$$

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right) \quad \theta=\pi / 2, \pi / 4, \pi / 8, \ldots
$$

$\theta$-angled phase gates

## Content

- Recall: Qubits and Circuits
- The Bloch Sphere
- Two Qubits
- Three Qubits and More


## Two qubits: basis states

One qubit state: $|0\rangle,|1\rangle$

$$
e_{0}=\binom{1}{0} e_{1}=\binom{0}{1}
$$

## Two qubits: basis states

One qubit state: $|0\rangle,|1\rangle$

$$
e_{0}=\binom{1}{0} e_{1}=\binom{0}{1}
$$

Two qubits state: $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ or $e_{00}, e_{01}, e_{10}, e_{11}$

$$
\left.\begin{array}{ccc}
e_{00}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) & e_{01}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) & e_{10}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
e_{00}=e_{0} \otimes e_{0}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
|00\rangle=|0\rangle \otimes|0\rangle & e_{01}=e_{0} \otimes e_{1} & e_{10}=e_{1} \otimes e_{0}
\end{array} e_{11}=e_{1} \otimes e_{1}\right]=|0\rangle \otimes|1\rangle \quad|10\rangle=|1\rangle \otimes|0\rangle \quad|11\rangle=|1\rangle \otimes|1\rangle
$$

## Two qubits, more states

Two qubits state: $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ or $e_{00}, e_{01}, e_{10}, e_{11}$

$$
e_{00}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

$$
e_{01}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
e_{10}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

$$
e_{11}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

## Two qubits, more states

Two qubits state: $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ or $e_{00}, e_{01}, e_{10}, e_{11}$

$$
e_{00}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

$$
e_{01}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
e_{10}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

$$
e_{11}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Another set of basis states: from "plus" and "minus" states

## Two qubits, more states

More two qubits states: "plus" and "minus" states

## Two qubits, more states

More two qubits states: "plus" and "minus" states

Orthonormal basis: Linearly independent and mutually orthogonal vectors.

## Two qubits, more states

More two qubits states: "plus" and "minus" states

Orthonormal basis: Linearly independent and mutually orthogonal vectors.

$$
\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\mathrm{H} \otimes \mathrm{H}=H^{\otimes 2}
$$

## 2-qubit gate: from single-qubit gates



Example: $\mathrm{H}|0\rangle=|+\rangle$

$H \otimes I$
$\mathrm{H} \otimes \mathrm{H}$

Quantum circuit: go left-to-right, like music on a staff, but we apply matrices to vectors going right-to-left.

Example: $(\mathrm{H} \otimes \mathrm{I})|01\rangle=(\mathrm{H}|0\rangle) \otimes(\mathrm{I}|1\rangle)=|+\rangle \otimes|1\rangle$

## 2-qubit gate: CNOT gate

Controlled-NOT Control


If the first qubit is 0 , then the whole gate acts as the identity;
If the first qubit is 1 , then the basis value of the second qubits flipped (Not gate $X$ )

$$
\text { CNOT }=\begin{array}{l|cccc} 
& \begin{array}{c}
00 \\
00 \\
010
\end{array} & \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
11 & 11 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{array} \quad \text { Example: CNOT }\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
d \\
c
\end{array}\right)
$$

## Example: H gate and CNOT gate



What's the output?

$$
\left.\begin{array}{l}
z_{1}=\mathrm{H} x_{1} \\
z_{2}=x_{2} \oplus z_{1}
\end{array}\right\} \text { Symbolic outputs }
$$

## Example: H gate and CNOT gate



For example, if $\left|x_{1} x_{2}\right\rangle=e_{00}$,

## Example: H gate and CNOT gate



For example, if $\left|x_{1} x_{2}\right\rangle=e_{00}$,

$$
\mathrm{H} \otimes \mathrm{I}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
$$

## Example: H gate and CNOT gate



For example, if $\left|x_{1} x_{2}\right\rangle=e_{00}$,

$$
\begin{aligned}
& \mathrm{H} \otimes \mathrm{I}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{llcc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) \\
& z=(\mathrm{H} \otimes \mathrm{I}) e_{00}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}|+\rangle \otimes|0\rangle
\end{aligned}
$$

## Example: H gate and CNOT gate



For example, if $\left|x_{1} x_{2}\right\rangle=e_{00}$,

$$
\begin{gathered}
z=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}|+\rangle \otimes|0\rangle \\
z^{\prime}=\operatorname{CNOT} z=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

## Example: H gate and CNOT gate



For example, if $\left|x_{1} x_{2}\right\rangle=e_{00}$,

$$
\begin{gathered}
z=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}|+\rangle \otimes|0\rangle \\
z^{\prime}=\operatorname{CNOT} z=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
\end{gathered}
$$

## Example: H gate and CNOT gate



For example, if $\left|x_{1} x_{2}\right\rangle=e_{00}$,

$$
\begin{gathered}
z=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}|+\rangle \otimes|0\rangle \quad \text { Separatable } \\
z^{\prime}=\operatorname{CNOT} z=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \quad \text { Entangled }
\end{gathered}
$$

## Example: H gate and CNOT gate



Definition: A quantum state is entangled if it cannot be written as a tensor product of smaller states.
https://wybiral.github.io/quantum/
https://algassert.com/quirk\#circuit=\{\"cols\":\%5 B\% ${ }_{5}$ D\%7D

## 2-qubit gate: CZ gate

Controlled-Z

$C Z=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

If both bits are 1, flip the sign;
Else, do nothing

## 2-qubit gate: CZ gate

Controlled-Z


Example:
$C Z=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

$$
\begin{aligned}
\mathrm{CZ}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) & =\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \mathrm{CZ}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1
\end{array}\right) \\
\mathrm{CZ}|01\rangle & =|01\rangle
\end{aligned} \quad \mathrm{CZ}|11\rangle=|1\rangle \otimes(-|1\rangle) .
$$

## 2-qubit gate: CZ gate

Controlled-Z


Example:
$\mathrm{CZ}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

If both bits are 1, flip the sign; Else, do nothing

$$
\begin{aligned}
\mathrm{CZ}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) & =\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \mathrm{CZ}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1
\end{array}\right) \\
\mathrm{CZ}|01\rangle & =|01\rangle \quad \mathrm{CZ}|11\rangle
\end{aligned}=|1\rangle \otimes(-|1\rangle) .
$$

Symmetric

## Other 2-qubit (symmetric) gates: CA gate

$$
\mathrm{CA}=\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & \mathrm{~A}
\end{array}\right)
$$

$2 r \times 2 r$ matrix for general $r \times r$ matrix $A$

## Other 2-qubit (symmetric) gates: CA gate

$\mathrm{CA}=\left(\begin{array}{ll}1 & 0 \\ 0 & \mathrm{~A}\end{array}\right)$
$2 r \times 2 r$ matrix for general $r \times r$ matrix $A$

Example:

$$
\mathrm{CS}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
$$

$$
\begin{array}{rlrl}
\operatorname{CS}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) & =\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) & \operatorname{CS}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0 \\
i
\end{array}\right) \\
\operatorname{CS}|01\rangle=|01\rangle & \mathrm{CS}|11\rangle & =|1\rangle \otimes(i|1\rangle) \\
& =|1\rangle \otimes e^{i \pi / 2}|1\rangle
\end{array}
$$

## Other 2-qubit (symmetric) gates: CA gate

$\mathrm{CA}=\left(\begin{array}{ll}1 & 0 \\ 0 & \mathrm{~A}\end{array}\right)$ $2 r \times 2 r$ matrix for general $r \times r$ matrix $A$

Example:

$$
\begin{aligned}
\mathrm{CS}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right) & \mathrm{CS}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) & =\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) & \mathrm{CS}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
i
\end{array}\right)
$$

## 2-qubit gate: SWAP gate

SWAP gate
Control


Target

$$
\mathrm{SWAP}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

## 2-qubit gate: SWAP gate

SWAP gate
Control


Target

Example:

$$
\text { SWAP }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\operatorname{SWAP}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

$$
\text { SWAP }\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
\text { SWAP }|01\rangle=|10\rangle \quad \text { SWAP }|10\rangle=|01\rangle
$$

## Content

- Recall: Qubits and Circuits
- The Bloch Sphere
- Two Qubits
- Three Qubits and More


## More qubits, basic basis

Three qubits state: $|000\rangle,|001\rangle,|010\rangle, \ldots$

Four qubits state: $|0000\rangle,|0001\rangle,|0010\rangle, \ldots$
$n$ qubits state: $2^{n}$ basic or standard states

## 3-qubit gate: Toffoli gate (Tof)

Toffoli gate


If the first two qubit are 1 , then the basis value of the third qubits flipped Otherwise, the whole gate acts as the identity;

## 3-qubit gate: toffoli gate (Tof)

Toffoli gate

$T o f=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

## 3-qubit gate: toffoli gate (Tof)

Toffoli gate



## 3-qubit gate: toffoli gate (Tof)

Toffoli gate


Example:
Tof $\left(\begin{array}{l}a \\ b \\ c \\ d \\ e \\ f \\ g \\ h\end{array}\right)=\left(\begin{array}{l}a \\ b \\ c \\ d \\ e \\ f \\ h \\ g\end{array}\right)$

## 3-qubit gate: Toffoli gate (Tof)

Toffoli gate


What's the output?

$$
\begin{aligned}
& z_{1}=x_{1} \\
& z_{2}=x_{2} \\
& z_{3}=x_{3} \oplus\left(x_{1} \wedge x_{2}\right)
\end{aligned}
$$

1
Symbolic outputs

## 3-qubit gate: Toffoli gate (Tof)

Toffoli gate


What's the output?

$$
\begin{aligned}
& z_{1}=x_{1} \\
& z_{2}=x_{2} \\
& z_{3}=|1\rangle \oplus\left(x_{1} \wedge x_{2}\right)=\neg\left(x_{1} \wedge x_{2}\right)=\operatorname{NAND}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

## Theorem

For fully time-constructible $t(n)$ between linear and exponential, $\operatorname{DTIME}[t(n)] \subseteq \operatorname{DQ}[\tilde{O}(t(n))]$

Hadamard is the only quantum-nondeterministic gate one needs to add in order to extend the notion of classical-feasible to quantumfeasible.

The main point of the next two lectures, focusing on chapters 7 and 8 of the text, is to show the extra powers that this gives.

## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Only need to look at the effect on basis states.

## More about Toffoli gate

Toffoli gate


$$
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \mathrm{S}=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad \mathrm{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Case 1: $x_{1}=0$


## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$\mathrm{S}=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Case 1: $x_{1}=0$


## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Case 1: $x_{1}=0$


## More about Toffoli gate

Toffoli gate

$H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$\mathrm{S}=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Case 1: $x_{1}=0$

## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Case 2: $x_{1}=1$

$$
x_{2}=0
$$



## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \quad \mathrm{S}=\left(\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right) \quad \mathrm{Z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Case 2: $x_{1}=1$

$$
x_{2}=0
$$



## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Case 2: $x_{1}=1$

$$
x_{2}=0
$$



## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
\mathrm{S}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Case 2: $x_{1}=1$

$$
x_{2}=0
$$

## More about Toffoli gate

Toffoli gate

$H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Case 2: $x_{1}=1$

$$
x_{2}=1
$$



## More about Toffoli gate

Toffoli gate


$$
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \mathrm{S}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad \mathrm{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Case 2: $x_{1}=1$

$$
x_{2}=1
$$



## More about Toffoli gate

Toffoli gate


$$
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \mathrm{S}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad \mathrm{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Case 2: $x_{1}=1$

$$
x_{2}=1
$$



## More about Toffoli gate

Toffoli gate

$\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\text { Case 2: } \begin{aligned}
x_{1} & =1 \\
x_{2} & =1
\end{aligned}
$$



HSSH $=\mathrm{HZH}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\mathrm{X}$ Flip $x_{3}$

## Quantum computation

Quantum algorithm applies a series of unitary matrices to a start vector.

- Keep the number $k$ of arguments for any operation to a constant!
- Any unitary matrix B of dimension $2^{k}$ with $k=1,2,3$ is feasible.
- Gates involving with more qubits is OK if they can be built up out of small gates


## Quantum computation

## Definition

A quantum computation C on $s$ qubits is feasible provided,

$$
\mathrm{C}=\mathrm{U}_{t} \mathrm{U}_{t-1} \ldots \mathrm{U}_{1}
$$

Where each $\mathrm{U}_{i}$ is feasible operation, and $s$ and $t$ are bounded by a polynomial in the designated number $n$ of input qubits.

## Example: H gates

$$
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

A $16 \times 16$ matrix

## Example: H gates and CZ gates



A $16 \times 16$ matrix multiple a $16 \times 16$ matrix

## Example: H gates and CZ gates



A $16 \times 16$ matrix multiple four $16 \times 16$ matrix

## Example: H gates and CZ gates



$$
H^{\otimes 4}=\frac{1}{4}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

A $16 \times 16$ matrix multiple four $16 \times 16$ matrix multiple a $16 \times 16$ matrix

## Example: quantum Fourier transform (QFT)

The $n$-qubit quantum Fourier transform (QFT) can be built up of $O\left(n^{2}\right)$ smaller gates.

Example: $n=4, N=2^{4}$

$\mathrm{T}_{\pi / 8}=\left(\begin{array}{cc}1 & 0 \\ 0 & w^{\prime}\end{array}\right)$ with $w^{\prime}=e^{i \pi / 8}$

## Thank you!

