
CSE491/596 Lecture 12/06/21: Qubits and Quantum Circuits
 
The Bloch Sphere
 
There is a way to cut the dimensions down to .  The following definition will be useful for quantum 3

states of multiple qubits as well:
 
Definition: Two quantum states  are equivalent if there is a unit complex number  such that 𝜙,𝜙' c

.  𝜙' =  c𝜙
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these to our basic states  and .  In the line for the matrix ,  is simply equivalent to just 1, 0( ) 0, 1( ) Y ie1
,  to ,  to , and .  We could also regard  as equivalent toe1 -ie0 e0 -i𝜇 𝜇 i𝜋 Y
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which makes clearer that it is a combination of  and  (indeed, ).  Finally, to X Z iY =  ZX =  -XZ

finish the line for , . Z Ze  =  - e  ≡  e1 1 1

 
Regarding our saying equivalence, note that
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which is the complex conjugate of  and is likewise a unit complex number.  Since  the c 𝜙 =  𝜙'c⏨
relation is symmetric.  That the product of two unit complex numbers is a unit complex number makes it 
transitive, and being reflexive is immediate with , so this is an equivalence relation.c =  1

 
A unit complex number can be written in polar coordinates as  for some angle , which c =  ei𝛾 𝛾
represents a "global phase."  Thus, dividing out by this equivalence relation emphasizes the relative 
phase  of the two components.  So let us write our original quantum state  in polar coordinates as 𝜑 𝜙

 where now  are real numbers between  and .  Choose , then ae , bei𝛼 i𝛽 a, b 0 1 𝛾 =  -𝛼

 with .  Since , the value of  is forced once we specify .  c𝜙 =  a, bei𝜑 𝜑 =  𝛽 -  𝛼 a  +  b  =  12 2 b a

So  and  are enough to specify the state.  a 𝜑
 
We can uniquely map points  to the sphere by treating  as a longitude and  (rather than ) as a,𝜑( ) 𝜑 a2 a
a latitude where the north pole is , the equator is , and the south pole is .  Then the latitude gives 1 0.5 0

the probability of getting the outcome .  All states like  and  that give equal probability of  and  0 𝜋 𝜇 0 1

fan out along the equator.  The north pole is  and the south pole is .  Well, it's high time we give these 0 1
states their formal names using Dirac notation: 
 

•  is called  and  is called .e  =  00 0 e  =  11 1

•  is called , the "plus" state.1, 1  =   +  
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•  is called , the "minus" state.1, -1  =   -  
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Here they all are, graphed on the Bloch Sphere:

 
Among web applets displaying Bloch spheres for qubits is https://quantum-circuit.com/home (free 
registration required).  Here is its graph for the  state.  It is more usual to show the  axis out + x

toward the reader and  at right, but that is less convenient IMHO for picturing  and .y + -
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Some algorithms, however, are IMHO easier to picture using the original planar diagram:

For one thing, this makes it easier to tell that  and  are orthogonal vectors, that  and  are 0 1 + -

likewise orthogonal vectors, and that the orthonormal basis  is obtained by a linear ,+ -

transformation (indeed, a simple rotation) of the standard basis .  ,0 1

 
A downside, however, is that this diagram gives extra points for equivalent space, whereas the Bloch 
sphere is completely non-redundant.  The Bloch sphere is also "more real" than the way we usually 
graph complex numbers via Cartesian coordinates.  In fact, every unitary  matrix  induces a 2 × 2 U
rotation of the Bloch sphere and hence fixes an axis, so the axes of the sphere are in 1-to-1 
correspondence with lossless quantum operations on a single qubit.  Whereas, the planar diagram 
gives a cut-down picture of how  acts as a rotation without fully showing you its axis.H
 
[There is optional reading for Dirac Notation and the Bloch Sphere, which I have posted to the non-
public link https://cse.buffalo.edu/~regan/cse491596/LRQmitbook2pp131-147.pdf  I worry it is overkill, 
and its illustration of "quarts" might confuse with what follows; I regard the above notes as enough.  The 
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following section returns to chapters 3--4 of the text.]
 
 
Two Qubits [Based on https://cse.buffalo.edu/~regan/cse491596/CSE596lect112818.pdf]
 
An -qubit quantum state is denoted by a unit vector in  where .  Thus, a 2-qubit state is n C

N N =  2n

represented by a unit vector in .   That takes up  real dimensions, and even trying tricks as for the C4 8

Bloch Sphere would bring that down only to a -dimensional hypersurface in .  Until we have a 6 R
7

Hyper-Zoom able to help us visualize 7-dimensional space, we have to rely on linear algebra and some 
general ideas shared by Hilbert Spaces whether real or complex.
 
One of those ideas is the standard basis.  In 4-space, this is given by the vectors:
 

.e  =  1, 0, 0, 0 ,  e  =  0, 1, 0, 0 ,  e  =  0, 0, 1, 0 ,  e  =  0, 0, 0, 10 ( ) 1 ( ) 2 ( ) 3 ( )

 
The indexing scheme for quantum coordinates changes the labels to come from  instead of 0, 1{ }2

from , using the canonical binary order .  Then we have:1, 2, 3, 4{ } 00, 01, 10, 11

 
.e  =  1, 0, 0, 0 ,  e  =  0, 1, 0, 0 ,  e  =  0, 0, 1, 0 ,  e  =  0, 0, 0, 100 ( ) 01 ( ) 10 ( ) 11 ( )

 
The big advantage is that these basis elements are all separable and the labels respect the tensor 
products involved:
 

 =  e  =  1, 0, 0, 0  =  1, 0 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  00 00 ( ) ( ) ( ) 0 0 0 0 0 0

 =  e  =  0, 1, 0, 0  =  1, 0 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  01 01 ( ) ( ) ( ) 0 1 0 1 0 1

 =  e  =  0, 0, 1, 0  =  0, 1 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  10 10 ( ) ( ) ( ) 1 0 1 0 1 0

 =  e  =  0, 0, 0, 1  =  0, 1 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  11 11 ( ) ( ) ( ) 1 1 1 1 1 1

 
It is OK to picture the tensoring with row vectors, but because humanity chose to write matrix-vector 
products as  rather than , they need to be treated as column vectors.  This will lead to cognitive Mv vM
dissonance when we read quantum circuits left-to-right but have to compose matrices right-to-left.  
Lipton and I are curious whether a "non-handed" description of nature can work.
 

With the "plus" and "minus" states, we also have (note )):1, 1 ⊗ 1, 1 = 1, 1 ⊗ 1, 1
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These four vectors are linearly independent and mutually orthogonal, so they form an orthonormal 
basis.  We can map the standard 4-dimensional basis to this one by forming the target vectors into a 
matrix---happily the matrix is symmetric and real so "handedness" does not come into play:
 

. =   ⊗  =  H ⊗H =  H
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Well, this is the case  of the Hadamard transform , about which more on Monday.  Also m =  2 H⊗m

note the following tensor products of  matrices:2 × 2

 

,H ⊗  I =   ⊗  =
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Some examples of states you can produce with these matrices are:
 

 =  ⊗  =  1, 1 ⊗ 1, 0  = 1, 0, 1, 0 =+0 + 0
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Meanwhile,

 

 =  ⊗  =  1, 1 ⊗ 0, 1  = 0, 1, 0, 1 =+1 + 1
1

2
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1

2
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 + 01 11
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can be gotten as  applied to the column vector .  However, the state H ⊗  I 0, 1, 0, 0  =  ( )T 01

, which we saw in the last lecture is entangled, cannot be gotten this way.  1, 0, 0, 1  =  
1

2
( )

 + 00 11

2

Instead, it needs the help of a  unitary matrix that is not a tensor product of two smaller matrices.  4 × 4

The most omnipresent one of these is:
 

.  CNOT =  

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 

 



 
Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis, 
the values are: , , CNOTe  =  CNOT  =  00 00 00 CNOTe  =  CNOT  =  01 01 01

, and .  We can get these CNOTe  =  CNOT  =  10 10 11 CNOTe  =  CNOT  =  11 11 10

from the respective columns of the  matrix, and we can label the quantum coordinates right on it:CNOT

Because we multiply column vectors, the co-ordinates of the argument vector come in the top and go 
out to the left.  If the first qubit is , then the whole gate acts as the identity.  But if the first qubit is , 0 1

then the basis value of the second qubit gets flipped---the same action as the NOT gate .  Hence the X

name Controlled-NOT, abbreviated : the NOT action is controlled by the first qubit.  The action CNOT

on a general 2-qubit quantum state  is even easier to picture:𝜙 =  a, b, c, d( )
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All it does is switch the third and fourth components---of any 4-dim. state vector.  Hence,  is a CNOT
permutation gate and is entirely deterministic.  Permuting these two indices is exactly what we need to 

transform the separable state  into the entangled state .  Since we got the 1, 0, 1, 0
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former state from  applied to , the matrix we want isH ⊗  I e00
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We can see the result coming from the first column.  When we do a quantum circuit left-to-right, 
however, the  part comes first on the left.  The symbol for a CNOT gate is to use a black dot to H ⊗  I( )

represent the control on the source qubit and  (which I have used as a symbol for XOR) on the target ⊕

qubit.  This is more easily pictured by a quantum circuit diagram:
 
If , then we can tell exactly what  is: it is the  state.  And if , then .  If x  =  1 0 y + x  =  1 1 y =  -
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 is any separate qubit state , then by linearity we know that x1 a, b  =  a  +  b( ) 0 1

.  This expresses  over the transformed basis; in the standard basis it isy =  a  +  b+ - y
 

.  a 1, 1 + b 1, -1  =  a + b, a - b  
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So we can say exactly what the input coming in to the first "wire" of the CNOT gate is.  And the input to 
the second wire is just whatever  is.  But because that gate does entanglement, we cannot specify x2

individual values for the wires coming out.  The state is an inseparable 2-qubit state:
 

. +  
1

2
00 11

 
If you measure either qubit individually, you get  or  with equal probability.  This is the same as if you 0 1

measured the state .  But that state is outwardly as well as inwardly different.  When both qubits ++

to be measured, it allows  and  as possible outcomes, whereas measuring the entangled state 01 10
does not.  I've seen papers telling ways to visualize entangled states of 2 or 3 qubits, but none 
implemented by an applet so far---quantum-circuit.com just shows Bloch spheres with the black 
dot at the center for the "completely mixed state": .   ¯ \ _ ツ _ / ¯ ( )

 
Three Qubits and More
 
The CNOT gate by itself has the logical description  and .  This means that if z  =  x1 1 z  = x  ⊕  x2 1 2

 then , but if  then .  Since this description is complete for all of the x  =  01 z  =  x2 2 x  =  11 z  =  ¬x2 2

standard basis inputs , it extends by linearity to all quantum states.  We x =  x x  =  00, 01, 10, 111 2

can use this idea to specify the 3-qubit Toffoli gate (Tof).  It has inputs  and symbolic outputs x , x , x1 2 3

 (which, however, might not have individual values in non-basis cases owing to entanglement). z , z , z1 2 3

 Its spec in the basis quantum coordinates is:
 

, , .  z  =  x1 1  z  =  x2 2 z  =  x  ⊕  x  ∧  x3 3 ( 1 2)

 

Of particular note is that if  is fixed to be a constant-  input, then x3 1

 

 

x1

x2

x3

z1

z2

z3

 000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 0 0 0 1

111 0 0 0 0 0 0 1 0



 
.z  =  ¬ x  ∧  x  =  NAND x , x3 ( 1 2) ( 1 2)

 
Thus the Toffoli gate subsumes a classical NAND gate, except that you need an extra "helper wire" to 
put  and you gate two extra output wires  that only compute the identity on  (in x  =  13 z , z1 2 x , x1 2

classical logic, that is---a non-basis quantum state can have knock-on effects even though all Toffoli 
does is switch the 7th and 8th components of the state vectors).  If you have polynomially many Toffoli 
gates, then you get only polynomially much wastage of wires, and you can use the good ones to 
simulate any polynomial-size Boolean circuit of NAND gates.  Because  has Boolean DTIME t n[ ( )]

circuits of size , and because Toffoli gates are deterministic, we can state an immediate t nO( ( ))

consequence:
 
Theorem: For fully time-constructible  between linear and exponential.t n( )

.DTIME t n  ⊆  DQ t n[ ( )] O( ( ))

In particular, .P ⊆  DQP ⊆  BQP

 
Well, we need to say more broadly what it means for quantum computations to be (polynomially) 
feasible.  The community convention is simply to count up gates of 1, 2, or 3 qubits as constant cost.  
Gates involving more qubits are OK if they can be built up out of the small gates.  We have already 
seen that  is just  binary Hadamard gates laid out in parallel.  The -qubit quantum Fourier H⊗n n n

transform (next week) can be built up out of  smaller gates---this actually has more "fine print" O n2

than sources usually say and is pursued in the chapter exercises of my book with Lipton.
 
And  is to  as  is to .  We should describe measurements in more detail and see BQP DQP BPP P

smaller-scale deterministic and randomized examples first.

 

 

 


