
CSE491/596 Lecture Wed. 12/06/32: Quantum Applications, Continued
 
First, let's revisit the "superdense coding" application.  Here is the circuit again in simplest form:

[Added to notes:]  Here is the setting as described by IBM's Qiskit webpage:

They picture the input  coming from a third party, Charlie, who creates an entangled pair via the 00

familiar Hadamard+CNOT method and sends one qubit to each of Alice and Bob.  Alice then encodes a 
2-bit message by applying one of the four Pauli matrices to her qubit, which is the top line of the 
quantum circuit.  She then sends her qubit to Bob, who in this rendition applies CNOT and Hadamard 
on his own turf.  
 
From Bob's ability to tell exactly which of the four matrices she used, he seems to be getting 2 bits of 
classical information from the send of one qubit.  But the catch is that Bob already got a prior qubit from 
Charlie that, by virtue of entanglement, counts as a prior conduit from Alice.  So he got 2 qubits of 
information from Alice in total after all.  One was in the past, before Alice made her elective choice 
among 4 options, but the conduit stayed in effect after Alice committed her choice.  From the standpoint 
of information, theory, the essence is this:
 

The channel between Alice and Bob---which Charlie perched on---carried two qubits of 
information after all.

 
 
Example: Quantum Teleportation
 
This one is not a "cheat" but an application with real uses.  Here it is conveyed by diagrams from the 
textbook:

 

 

https://qiskit.org/textbook/ch-algorithms/superdense-coding.html


 

 

 



 
The point here is not that the two bits sent by Alice were at staggered time intervals, but rather than the 
quantum state  is exactly replicated on Bob's turf.  This is without his (or Alice's) knowing what that c

state is.  A known quantum state can always be re-prepared; moreover, the standard basis states can 
be duplicated using CNOT gates.  An arbitrary quantum state  cannot be copied, however.  That is to c

say, there is no unitary operation  such that for all quantum states ,U c

 
.U c ⊗  e  =  c ⊗  c( 0)

 
Or in Dirac notation, one cannot do .  Although there unitary  matrices that do this U  =  c0 cc 4 × 4

when  is  or , there is none that works in general.  This is the no-cloning theorem, which si c 0 1

covered in section 6.2.
 

 

 



Deutsch-Jozsa Extension
 
Now we consider problems as the complexity parameter  is scaled up.  The maze diagrams would get n
exponentially big, but we can track the computations via linear algebra. 
 
Call a function  balanced if  has  values of  and  values of 1.  When f :  0, 1   0, 1{ }n → { } f 2n-1 0 2n-1

, the problem of distinguishing constant functions  from balanced ones is n = 1 f :  0, 1   0, 1{ }n → { }

Deutsch's original problem.  Richard Jozsa observed that for higher , the classical algorithms require n

 queries, while the quantum ones can still do it on one query to a completely separable 2 + 1n-1

superposed state.  
 
This is a conditional problem, called a promise problem, in that it only applies when  is in one of f

those two cases.  If  is neither balanced nor constant, then "all bets are off"---any answer is fine, even "f

".  It is like Deutsch's setup except with  in place of the first , input  in  ¯ \ _ ツ _ / ¯ ( ) H
⊗n

H 0 1n

place of , and targets (ignoring the  normalizers):01 2

 
• constant  (instead of , so that  is certainly measured.↦ +0n 0 1 +00 01 0n

• balanced  (instead of , such that  is certainly not measured.↦ ? +10 11 0n

 
Here is a serviceable diagram, intending the final bit to be .  As before,  is the reversible w  =  1 1 F

form of , so that :f F x ⋯ x w  =  x ⋯ x ⋅ w ⊕ f x ⋯ x( 1 n 1) 1 n ( 1 ( 1 n))

 
The key observation is that for any , any argument , and , the amplitude in the f x ∈  0, 1{ }n b ∈  0, 1{ }

component  of the final quantum state  isxb 𝜙
 

 

 



.-1 -1
1

2n+1

∑
 

t ∈ 0,1{ }n

( )x•t( )f t ⊕b( )

 
Here  means taking the dot-products  (which is the same as ) and adding them up x • t x ⋅ ti i x ∧ ti i

modulo  (which is the same as XOR-ing them).  Well, when  this is always just zero, so the 2 x =  0n

first term is  and just drops out, leaving -1( )0

 

.𝜙 0 b  =  -1 -1n 1

2n+1

( )b ∑
 

t ∈ 0,1{ }n

( )f t( )

 
Note that the  term is independent of the sum over , so it comes out of the sum---and this is why -1( )b t
we get two equal possibilities in the original Deutsch's algorithm as well.  Thus we have verified the 
folloing points of the analysis:
 

• When  is constant, these terms are all the same, so they amplify---giving  for the constant-f
1

2

false function and  for constant-true.  Both of these amplitudes square to  and so together -1

2

1

2

soak up all the output probability, so that  is measured with certainty.0n

• When  is balanced, the big sum has an equal number of  and  terms, so they all interferef +1 -1

 and cancel.  Hence  will certainly not be measured.0n

 
Added: A randomized classical algorithm can efficiently tell with high probability whether  is constant f

by querying some random strings.  If it ever gets different answers  then definitely  is not f y  ≠  f y'( ) ( ) f
constant.  (So, under the condition of the "promised problem," it must be balanced.)  If it always gets 
the same answer, then since any balanced function gives 50-50 probability on random strings, it can 
quickly figure that  is constant.  But it is still the case that a deterministic algorithm needs f
exponentially many queries and hence exponential time.
 
 
Simon's Algorithm
 
Here we are given  with a promise property.  The promise is that there is a "hidden f : 0, 1 0, 1{ }n → { }n

string"  such that for all :s ∈ 0, 1{ }n x, y ∈ 0, 1{ }n

 
.f x = f y  ⟺ y = x⊕ s( ) ( )

 
When , this is equivalent to  being 1-to-1.  So the promise is that if  is not 1-to-1, then it is 2-to-s = 0n f f

1 on  in a very special way controlled by a single string .  For a classical algorithm that is 0, 1{ }n s

allowed only to query  for  singly, the chance of finding a "colliding"  such that f u( ) u ∈ 0, 1{ }n v

 is exponentially tiny.  A meta-question is whether "white-box" knowledge of an efficient f v = f u( ) ( )

 

 



formula  for  can help find collisions---at least under the "hidden subgroup" promise of there being an 𝜙 f

. But in the black-box case, one can actually prove that classical subexponential time has only a s
vanishing probability of finding a collision.  
 
The "Quantum Black Box" assumption in this case is (IMHO) a little stronger: it is the feasibility of 
creating the functional superposition state
 

𝛷  =   f

1

N

∑
 

x∈ 0,1{ }n

xf x( )

 
In practice, one cannot get this to full precision over exponentially many terms (or can we?)  The 
question shirked by many texts, including mine, is what kind of approximations to states like  enable 𝛷f

the propounded conclusions to go through.  Presuming perfection, here is the algorithm:

 
Simon's Theorem: This algorithm---which alternates quantum and classical stages---distinguishes the 
cases  and  with high probability.  Whereas, any sub-exponential time classical s = 0n s ≠ 0n

probabilistic algorithm has only a negligible advantage over guessing which case holds.
 
[Lecture carried this over into Friday, with a diagram of the circuit.]

 

 


