
CSE491596 Lecture Wed. 12/07/22: Visualizing Quantum Circuits and Measurements
 
First some review of Monday's guest lecture, on the theme of "when is a typo not a typo?": A diagram in 
last Friday's posted course notes had a typo, where it said---
 
"Some algorithms, however, are IMHO easier to picture using the original planar diagram:"

 
The typo is  being graphed in the wrong place, a simple "sign error."  But it is not really an error, | - ⟩

because  is a unit complex number, so multiplying by it leaves equivalent quantum states.  So , -1 | - ⟩

represented instead as , could just as well be graphed "northwest."-1, 1 /( ) 2

 
The real takeaway is that the Cartesian view is redundant.  The Bloch sphere is not.
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Another rationale for the Bloch sphere is the following fact:
 
Theorem: Every  unitary matrix represents a rotation of the Bloch sphere around some axis.2 × 2

 
The  gate turns the sphere upside down, so  goes to  and vice-versa.  It does so by rotating NOT |0⟩ |1⟩

180 degrees around the -axis.  It leaves the states  and .  Well, it actually maps  to  x | + ⟩ | - ⟩
1,-1( )

2

-1,1( )

2

but---we just saw these are equivalent quantum states.  So it fixes the -axis, and that is why it has the x

alternative name .  The Pauli  gate fixes the -axis, and  fixes the -axis.  The Hadamard gate X Y y Z z
effects a 180-degree rotation around a diagonal axis, and that is how to visualize the way it switches 

 and , likewise  and .|0⟩ | + ⟩ |1⟩ | - ⟩

 

Because  has Boolean circuits of size , and because Toffoli gates are DTIME t n[ ( )] t nO( ( ))

deterministic, we can state an immediate consequence:
 
Theorem: For fully time-constructible  between linear and exponential,t n( )

.DTIME t n  ⊆  DQ t n[ ( )] O( ( ))

 
In particular, , where   is to  as  is to .  (We define  formally P ⊆  DQP ⊆  BQP BQP DQP BPP P BQP

after saying more about measurements.)
 
Outputs and Measurements
 
There are various conventions about what it means for a family  of quantum circuits to compute a C[ n]

function  on , where  is an ensemble of functions  on  and each  computes .  I f 0, 1{ }* f fn 0, 1{ }n Cn fn

like supposing that  is coded in  where  depends only on  and giving  -many output f x( ) 0, 1{ }r r n Cn r

qubits separate from the  input qubits, plus some number  of ancilla qubits.  (It is traditional, IMHO n m

weirdly, to consider that the primordial input is always  and that for any other , NOT gates are 0n x

prepended onto the circuit for those lines  where .) i x  =  1i

 
For languages, this means that the yes/no verdict comes on qubit .  Many references say to n + 1

measure line  instead.  (Using a swap gate between lines  and  can show these conventions to 1 1 n + 1

be equivalent, but I prefer reserving lines  to  for potential use of the "copy-uncompute" trick, which is 1 n
covered in section 6.3 and is a presentation option.)   Even for languages, however, one evidently 
cannot get the most power if you need always to rig the circuit so that on any input , the x ∈  0, 1{ }n

output line always has a (standard-)basis value, i.e., is  with certainty or is  with certainty.  Instead, 0 1

one must measure it, whereupon the value  is given with some probability ,  with probability .  0 p 1 1 -  p
 
The math of measurements (at least of the kind of pure states we get in completely-specified circuits) is 
simple.  At the end we have a quantum state  of  qubits, counting the output and any ancilla 𝛹 n + r + m

 

 



lines.  It "is" a vector  where .  Numbering  in canonical v , v , … v  ∈  C( 1 2 Q) Q Q =  2n+r+m 0, 1{ }n+r+m

order as , an all-qubits measurement gives any  with probability .  If we focus on just z , … , z1 S zj |v |j
2

the  output lines, then any  occurs with probabilityr y ∈  0, 1{ }r

. |v |∑
 

j: z  agrees with y on the r output linesj

j
2

 
When  and  the sum is over all binary strings   that have a  in the corresponding r =  1 y =  0 zj 0

places.  It is a postulate of quantum mechanics that we could do the measurement in such a way that 
the new state  stays "coherent" on qubit lines outside the  lines that were measured, but we will not 𝛹' r
care about this---we will be OK doing an all-qubits measurement (which "collapses" the system down to 

 for whatever basis state  is yielded) and then re-starting the whole circuit to do multiple trials, if zj zj

necessary.  What can make them necessary is the simple "unamplified" definition of  along lines of BQP

the definition given for .  To simplify the notartion, let  denote the probability of measuring  on BPP px 1

the output qubit line.  The notion of uniformity is similar to that for ordinary Boolean circuits: it means 
that  can be written down in  (classical) time.Cn nO 1( )

 
Definition: A language  belongs to  if there is a uniform family  of polynomial-sized quantum L BQP C[ n]

circuits such that for all  and inputs ,n x ∈ 0, 1{ }n

 
x ∈  L ⟹  p  ≥  3 / 4;x

x ∉  L ⟹  p  ≤  1 / 4.x

 
With the help of ideas grouped under the term "principle of deferred measurement", the idea of 
amplifying the difference in probabilities by repeated trials and majority vote of the outcomes can be 
internalized within the circuits.  This needs polynomially more ancilla qubits but allows doing only one 
measurement, which will then be guaranteed to give the correct answer with probability supremely 
close to  rather than probability .  However, it is (IMHO) more helpful to think instead of quantum 1 3 / 4

circuits as objects that can be sampled, and that a final classical post-processing routine gives the final 
answer as a function of the results of the samples.  This is how Simon's algorithm, Shor's algorithm, 
and (general forms of) Grover's algorithm are usually conceived.  The same approach of assembling a 
value  from multiple sample results can likewise be used for defining how functions  are computed.g x( ) g
 
With that said, the idea of computing a function  with  represented literally within a quantum f x  =  y( ) y

(basis) state is often applied a different way.  Given a circuit  computing  on lines  C y n + 1, … , n + r

that way---and using "copy-uncompute" to restore  on lines ---make  by prepending  on x 1, … , n C' H⊗n

the first  lines.  Give   as the actual input.  The resulting state isn C' 0n

 

.s  =f
1

2n

∑
 

x ∈ 0,1{ }n

x f x( )

 

 

 



Although each individual term  is separable---indeed, it is the basis state  x f x( ) e ⊗ e  =  ex y xy

where ---the sum is usually majorly entangled.  Our text calls this the functional y = f x( )

superposition of  over the domain .  In Shor's algorithm for a product  of two f 0, 1{ }n M =  pq

primes, first a seed  is chosen randomly from the  numbers that are not a <  M 𝜌 =  p - 1 q - 1( )( )

multiples of  or .  Then  is the function , where  is redundantly allowed to go as high p q f x( ) a Mx mod x

as  with  being a power of  between  and .  That makes enough room for the Q - 1 Q 2 M2 2M2

periodicity of the powering mod  to make enough waves for the QFT to do what Joseph Fourier knew M

it would 198 years ago: it transforms the waves' period, which divides , into a peak.  Repeated runs 𝜌

and measurements eventually give enough information about  to infer  and .  𝜌 p q
 
Thus Shor's algorithm invokes both the "input , output " view of what a quantum circuit does and x f x( )

the randomized sampling view.  The latter is the external algorithm, and its input is not " " but rather , x C

which in turn comes from the factoring problem instance  and the random seed .  In lieu of covering M a
the full details in chapters 11 and 12, we can state:
 
Shor's Theorem: FACTORING is in .BQP

 
At present, I accept that  is feasible to build and the QFT is feasible to apply---at least with sufficient sf
approximation for Shor's algorithm to work.  However, I am chary of the account given under the Many 
Worlds Hypothesis.  As told by David Deutsch and others, each Hadamard gate branches into two 
universes.  If the  Hadamards stayed separate to make  pairs that might be reasonable, but building n n

 seems to entail piggy-backing them to make  universes, all harnessed together by the QFT.   sf 2n

 
Bigger Quantum Circuit Examples
 
We first need to say more broadly what it means for quantum computations to be (polynomially) 
feasible.  The community convention is simply to count up gates of 1, 2, or 3 qubits as constant cost.  
Gates involving more qubits are OK if they can be built up out of the small gates:
 

• We have already seen that  is just  binary Hadamard gates laid out in parallel.  H⊗n n

• The -qubit quantum Fourier transform (QFT) can be built up out of  smaller gates---n O n2

examples for  or  are a presentation option.n =  3 4

 
There is one thing that needs to be said about the QFT.  The usual recursive way to build it via  O n2

unary and binary gates uses controlled rotations by exponentially tiny angles.  This is already evident 
from the four-qubit illustration in the textbook (where the two gates on the left are :

 

 



Here  with  not  as with the -gate.  So  has a phase angle T  =  𝜋/8
1 0

0 𝜔'
𝜔' =  ei𝜋/8 𝜔 =  ei𝜋/4 T 𝜔'

one-sixteenth of a circle.  For  the next bank uses , then , and soon the angles would n =  5 1 / 32 1 / 64

be physically impossible so the gates could never be engineered.  Those super-tiny angles are in the 
definition of the QFT itself.  For any , it takes  where .  With , the matrix n 𝜔  =  en

2𝜋i/N N =  2n n =  3

together with its quantum coordinates is:

 
For  we raise  with its tiny phase to exponentially many different powers.  How can this QFTN 𝜔N

possibly be feasible?  Leonid Levin among others raised this objection.  Here are several answers:

 

 

 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 1 1

001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i

011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1

101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1

5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j  =  𝜔[ ] ij



• Basic gates can fabricate quantum states having finer phases.  This is already hinted by the 
diagram in the case of .  Try composing  and .  The Solovay-HTH HTHT H* HTHT HTHT H* *

Kitaev theorem enables approximating operators with exponentially fine angles by polynomially 
many gates of phases that are multiples of  (using CNOT to extend this to multiple-qubit 𝜔
operators).

• The Toffoli and Hadamard gates by themselves, which have phases only  and , can +1 -1

simulate the real parts and imaginary parts of quantum computations separately via binary code, 
in a way that allows re-creating all measurement probabilities.  (This is undertaken in exercises 
7.8--7.14 with a preview in the solved exercise 3.8.) 

• The CNOT and Hadamard gates do not suffice for this, even when the so-called "phase gate" 

 is added.  The Pauli  gates and also  can be built from these, but S =  T  =  2 1 0

0 i
X, Y, Z CZ

quantum circuits of these gates can be simulated in deterministic ("classical") polynomial time.  
However,  suffices to build the Toffoli gate, per the diagram below (which is also a CS

presentation option).  So Hadamard +  is a universal set using only quarter phases.  CS
• The signature application of the QFT, which is Shor's algorithm showing that factoring belongs to 

, may only require coarsed-grained approximations to .  BQP QFTN

For these reasons,   is considered feasible even though  is exponential.  Not every QFTN N =  2n

 unitary matrix  is feasible---the Solovay-Kitaev theorem relies on  having a small exact N ×  N U U

formulation to begin with.  But if we fix a finite universal gate set (such as , , H + T + CNOT H + Tof

or  above) and use only matrices that are compositions and tensor products of these gates, H + CS
then we can use the simple gate-counting metric as the main complexity measure.
 
 
 
Reckoning and Visualizing Circuits and Measurements
 
There are basically three ways to "reckon" a quantum circuit computation:
 

1. Multiply the  matrices together---using sparse-matrix techniques as far as possible.  If Q × Q

 and you try this on a problem in the difference then the sparse-matrix techniques BQP ≠  P

must blow up at some (early) point.  The downside is that the exponential blowup is paid early; 
the upside is that once you pay it, the matrix multiplications don't get any worse, no matter how 
more complex the gates become.  This is often called a "Schrödinger-style" simulation.

2. Any product of -many  matrices can be written as a single big sum of -fold products.  s Q × Q s

 

 



For instance, if  are four such matrices and  is a length-  vector, thenA, B, C, D u Q

.ABCDu i  =  A i, j ⋅ B j, k ⋅C k, l ⋅D l, m ⋅ u m[ ] ∑
Q

j,k,l,m=1

[ ] [ ] [ ] [ ] [ ]

Every (nonzero) product of this form can be called a (legal) path through the system.  [As hinted 
before, in a quantum circuit,  will be at left---on an input , it will be the basis vector u x

 under the convention that s are used to initialize the output and ancilla lines-e  =  x0r+m x0r+m 0

--and  will be the first matrix from gate(s) in the circuit as you read left-to-right.  Thus the D

output will come out of , which is why it is best to visualize the path as coming in from the top A

of the column vector , going out at some row  (where  is nonzero---for a standard basis u m um

vector, there is only one such ), then coming in at column  of , choosing some row  to exit m m D l

(where the entry  is nonzero), then coming in at column  of , and so on until exiting at D l, m[ ] l C

the designated row  of .  This is the discrete form of Richard Feynman's sum-over-paths i A
formalism which he originally used to represent integrals over quantum fields (often with respect 
to infinite-dimensional Hilbert spaces).  The upside is that each individual path has size  O s( )

which is linear not exponential in the circuit size.  The downside is that the number of nonzero 
terms in the sum can be far worse than  and doubles each time a Hadamard gate (or other Q
nondeterministic gate) is added to the circuit.  

3. Find a way to formulate the matrix product so that the answer comes out of symbolic linear 
algebra---if possible!

 
For the textbook, I devised a way to combine the downsides of 1 and 2 by making an exponential-sized 
"maze diagram" up-front but evaluating it Feynman-style.  Well, the book only uses it for  1 ≤  Q ≤  3

and I found that the brilliant Dorit Aharonov had the same idea.  All the basic gate matrices have the 

property that all nonzero entries have the same magnitude---and when normalizing factors like  are 1

2

collected and set aside, the Hadamard, CNOT, Toffoli, and Pauli gates (ignoring the global  factor in ) i Y

give just entries  or , which become the only possible values of any path.  That makes it easier to +1 -1

sum the results of paths in a way that highlights the properties of amplification and interference in the 
"wave" view of what's going on.  The index values become "locations" in the wavefront m, l, k, j, i, …

as it flows for time , and since it is discrete, the text pictures packs of...well...spectral lab mice running s
through the maze.  
 
One nice thing is that you can read the mazes left-to-right, same as the circuits.  Here is the 

 entangling circuit example:H +  CNOT

 

 



 
No interference or amplification is involved here---the point is that if you enter at , then  and 00 00

 are the only places you can come out---and they have equal weight.  To see interference, you can 11

string the "maze gadgets" for two Hadamard gates together:
 

 
In linear-algebra terms, all that happened at lower right was  giving .  But the wave 1 ⋅ 1 +  - 1 ⋅ 1 0

interference being described that way is a real physical phenomenon.  Even more, according to 
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse" 
(which can be a photon after going through a beam-splitter).  One of those universes has "Anti-Phil", 
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they 
fight to mutual annihilation.
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