Lecture began with pen on paper sketching the whole circuit:
Simonis Circuit for a given function $f:\{0,1\}^{n}+\{0,1\}^{n}$. $F(x, w)=(x, w \oplus f(x))$ is the reversible form.

To do the analysis, we represent the quantum state \mathbf{b} just before the measurement, to see which possible outcomes $|x y\rangle$ from the measurement have nonzero amplitude. If y is not in the range of f, then the terms $\mathbf{a}(t y)$ in the expression for the amplitude $\mathbf{b}(x y)$ are all zero, so $\mathbf{b}(x y)$ is zero regardless of x. For y in the range of f, in the case where f is 2 -to- 1 , this means there are unique strings z_{1} and z_{2} such that: $f\left(z_{1}\right)=f\left(z_{2}\right)=y$ and $z_{1} \oplus z_{2}=s$. Then the body of $\mathbf{b}(x y)$ simplifies as shown below:

This is either 0 or $\pm \frac{2}{N}$, depending on whether or not $x \bullet s=0$. Thus, in this case, we have

$$
\boldsymbol{b}(x y)= \begin{cases} \pm \frac{2}{N} & \text { if } y \in R \text { and } x \bullet s=0 \\ 0 & \text { otherwise }\end{cases}
$$

The case where $\boldsymbol{b}(x y)$ is nonzero occurs exactly for half the $x \mathrm{~s}$ and for half the y s. This is as it should be-otherwise, the norm of \boldsymbol{b} would not be 1 .

Finally, it follows that any measurement yields $x y$ with x a random Boolean string, so $x \bullet s=0$ as claimed.

Proof of Theorem 10.1. By lemma 10.2, we accumulate random x so that $x \cdot s=$ 0 . Because a random vector avoids even an ($n-1$)-dimensional subspace with probability at least $\frac{1}{2}$, the expected number of trials to obtain a full-rank system is below $2 n$, and the probability of eventual success is overwhelming. If we are in the $s=0$ case, then we will quickly find that out as well. The last step, on solving for a nonzero s, is to generate and verify the witness for f not being one to one.

Note, incidentally, that the classical part of the algorithm gives a vectorspace structure to $\{0,1\}^{n}$, with bitwise XOR serving as vector addition modulo 2 . This contrasts with the quantum part of the algorithm using N dimensional space for its own reckonings.

Lemma 10.2 Suppose that f is periodic with nonzero s. Then the measured x s are random Boolean strings in $\{0,1\}^{n}$ such that $x \bullet s=0$.

Proof. In this case, f is two to one. Define R to be the set of y such that there is an x with $f(x)=y$; that is, R is the range of the function f. Note that R contains exactly half of the possible y values.

If y is not in R, then $\boldsymbol{b}(x y)=0$, because no t makes $\boldsymbol{a}(t y)$ nonzero. If y is in R, then there are two values z_{1} and z_{2} so that $f\left(z_{i}\right)=y$ for each i. Further,

$$
z_{1}=z_{2} \oplus s
$$

In this case,

$$
\begin{aligned}
\boldsymbol{b}(x y) & =\frac{1}{N}\left((-1)^{x \bullet z_{1}}+(-1)^{x \bullet\left(z_{1} \oplus s\right)}\right) \\
& =\frac{1}{N}(-1)^{x \bullet z_{1}}\left(1+(-1)^{x \bullet s}\right) .
\end{aligned}
$$

To finish the whole argument: If f is 1 -to- 1 , so that $s=0^{n}$, then every x makes $x \bullet s=0$. The analysis kicks in to say that if we currently have at most $n-1$ linearly independent equations, then with at least 50-50 probability we get one more from the measurement, which gives a random vector $x \in\{0,1\}^{n}$. Once we know we have n linearly independent equations---which we can tell in deterministic polynomial time by Gaussian elimination---then we know we must be in the 1-to-1 case. The only possible error is if we kepy on unluckily getting "tails" meaning a dependent equation.

If f is 2 -to-1, then we will never get n independent equations. We want to get $n-1$ of them, so that we can deterministically solve for s uniquely. By similar reasoning, the worst case is when one has $n-2$ independent equations, whereupon the chance of getting a new one from re-running the circuit and re-sampling the measurement is 50-50. Doing $3 n$ or so trials gives only an exponentially small chance of never getting the $(n-1)$ st equation. And when you get it, there is only an exponentially small chace of being wrongly stuck on $(n-1)$ when the truth is f being 1-to-1. Thus, with high likelihood, you will efficiently reach the answer " 2 -to- 1 " in this case---and compute s as well.

The final plank in Simon's theorem is that a classical polynomial-time randomized algorithm cannot achieve anywhere near the same level of confidence in the answer. This is rigorously proved when the algorithm is only allowed to query the function f in its Boolean form. If f is given as a numerical function (such as under the reductions to polynomial and linear functions on assignments 4 and 5), then classical impossibility is unclear. This is the import of my article

https://rilipton.wpcomstaging.com/2011/11/14/more-quantum-chocolate-boxes/

from November 2011. This objection notwithstanding, Peter Shor was inspired by Simon's algorithm to find an efficient quantum algorithm for a standard (i.e., non-oracle, non-learning) problem that much of humanity believes in---and depends on---its not being efficiently classicially solvable. This problem is our old friend factoring, whose decision version we saw belongs to NP \cap co-NP.
[Lecture then took Qs on homeworks. I mainly wanted to emphasize the similarity of the use of front-and-back Hadamard transform between graph states and the week's application examples. The main difference is that the graph states have only the initial n qubit lines for their vertices, whereas the applications have 1 or n more qubits beneath. I closed by inserting the following snippet---here with a better diagram than the one I drew in lecture.]

When Graph States Go "Hyper"

Let us revisit the example at the end of the Friday 12/01 lecture of the graph state circuit for the triangle graph on three nodes. Suppose we change it by rubbing out the first -1 from the middle column, which was previously on the arrow shown in blue:

That is, we removed the -1 from the row for $|011\rangle$. The middle column now "fires" only when all 3 bits are 1, i.e., for the component of $|111\rangle$ in any state. This is the action of the double-controlled Z-gate, CCZ (which is really a triple control of a 180° phase shift). It is easy to diagram in a quantum circuit:

In graph-theoretic terms, this has replaced the edge $(2,3)$ by the hyper-edge $(1,2,3)$, thus creating a hypergraph. The effect of changing only the color of the mouse in row 4 (for $|011\rangle$) may seem small, but it has a wild effect on the state vector. Now $z=|000\rangle$ has 5 positive paths from $x=|000\rangle$ instead of 4 , so its amplitude is $\frac{5-3}{8}=\frac{1}{4}$. Six other components have amplitude $\frac{1}{4}$, and they collectively have $\frac{7}{16}$ of the probability. The other has 7 positive paths to 1 negative, and so amplitude $\frac{7-1}{8}=\frac{3}{4}$ which squares to $\frac{9}{16}$. Note that the previous amplitude was $\frac{6-2}{8}=\frac{1}{2}$ which squares to just $\frac{1}{4}$, so flipping just one path of eight made a $\frac{5}{16}$ difference to the probability, more than one might expect. The CCZ gate could likewise be in any order---the gates commute so there is no element of time sequencing until the final bank of H gates. The middle part is "instantaneous."

This little illustration of wildness sits over a more general point. When you translate the action fo the CCZ from Boolean logic to a numerical equation, you get one that is cubic---just like from general 3SAT on the homeworks. Counting solutions to this kind of cubic equation is NP-hard. In fact, sandwiching the CCZ gate between two H gates (on any one qubit line) gives the Toffoli gate (with target on that line). So CCZ likewise gives a universal gate set. There is a general theorem:

Gottesmann-Knill Theorem: There is a deterministic polynomial-time classical algorithm that, given any n-qubit quantum circuit C composed of the gates $\mathrm{H}, \mathrm{CNOT}, \mathrm{S}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and $\mathbf{C Z}$ only, computes $\left\langle 0^{n}\right| C\left|0^{n}\right\rangle$ exactly in $s^{O(1)}$ time, where $s \geq n$ is the number of gates in C.

As soon as we add Tof, T, or CS, the theorem goes away---and we have to deal with the full power of quantum circuits. That this power goes beyond classical randomized algorithms is argued by Shor's Theorem, to come next.

