
CSE491/596 Last Lecture (Fri 12/09/22): Signs of Quantum Advantage
 
The term "quantum advantage", which is IBM's preferred alternative to saying "quantum supremacy", 
IMHO has a slightly different meaning.  It means any ability of quantum hardware or software to out-
perform any classical machine on a certain task.  The three signature applications regarded as having 
quantum advantage, though not proven by all means, are:
 

1. Shor's Algorithm for factoring and related problems: exponential time advantage.
2. Grover's Algorithm for searching for a witness string: quadratic time advantage.
3. Simulating natural (quantum) processes in real time: exponential time advantage.

 
The third was Richard Feynman's motivation for quantum computing in contrast to "It From Bit" and the 
wholly-lexical view of Nature.  It expresses "quantum supremacy."  Although the quadratic time 

advantage of Grover's Algorithm is usually written as time  to search  locations, it really O s n( ) s n( )

arises in applications where  for some linear or polynomial function , so the savings is s n  =  2( ) r n( ) r n( )

"only"  in place of .  Even with this clarification, I remain a "Grover skeptic"---I think O 2r n /2( ) O 2r n( )

that a true measure of the total "effort" of the search remains .  I am a "Shor-believer", but both O 2r n( )

Richard Lipton and I believe the problems solved by Shor's Algorithm belong to classical polynomial 
time anyway.  So for me, wherther there is truly an exponential advantage in quantum devolves upon 
the question I began with last week.
 
These algorithms, covered respectively in chapters 11-12, 13, and 18, are beyond our scope, but we 
can give a taste of where quantum advantage comes from in examples using 2 or 3 qubits, as covered 
in chapter 8.  These examples began with David Deutsch, after he abandoned his initial claim at Oxford 
in 1985 that quantum computers could decide the Halting Problem of classical computers.  Whether the 
classical setting they allow is commensurate with advantages given to the quantum setting is a matter 
for debate about these small examples.  
 
Deutsch's Algorithm
 
David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing 
while he and I were graduate students at Oxford in the mid-1980s.  At first, he claimed quantum 
computers could solve the Halting Problem in finite time.  Fellows of Oxford's Mathematical Institute 
refuted the claim.  But it was not crazy: a year ago it was proved that a binary quantum system of 
"interactive provers" can (kind-of-)solve the Halting Problem in finite time.  (My review of the paper is at 
https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/)  Per my memory of 
observing some meetings about it, the gap in Deutsch's argument had to do with properties of 
probability measures based on infinite binary sequences. 
 
So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that 
quantum computers can do and classical ones cannot.  (Well, unless the playing field is leveled for 
them...but before we argue about it, let's see the task.)  The task is a learning problem, a kind of 

 

 



interaction we haven't covered until this last day.  Instead of "input , compute , a learning x y =  f x "( )

problem is to determine facts about an initially-unknown entity  that you can query.  f
 

1. Oracle Turing machines give a classic way to define this kind of problem.  For oracle functions 
 or languages  drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM  that on input  (for large enough ) can distinguish what  is in time M 0n n A

(say) polynomial in ?  The computation  can learn about  by making queries  on n M 0A n A y

selected strings  and observing the answers .  y A y( )

2. One can also define oracle circuits that have special oracle gates with some number  of m

input wires and enough output wires to give the answer  on any .f y( ) y ∈  0, 1{ }m

3. An ordinary electrical test kit behaves that way.  It is a circuit with a place(s) for you to insert one 
or more (possibly-defective) electrical components .  The test results should diagnose A

electrical facts about .A
4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms 

work this way.  They involve an oracle function  given in reversible form f :  0, 1  0, 1{ }n → { }r

as the function defined by:F : 0, 1  0, 1  { }n+r → { }n+r

 
. F x, z  =  x, f x  ⊕  z( ) ( ( ) )

 
Usually  is  and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

.  In the simplest case ,  is a two-(qu)bit function.  Some examples:xf x( ) n =  r =  1 F
 

• If  is the identity function, , then .f f x  =  x( ) F x, z  = x, x⊕ z  =  CNOT x, z  ( ) ( ) ( )

• If , then : , , , .f x = ¬x( ) F x, z = x, x ↔ z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 10( ) F 11 = 11( )

• If  is always false, i.e., , then  is the identity function.f f x  =  0( ) F

• If , then , so , , , f x = 1( ) F x, z = x, ¬z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 11( ) F 11 = 10.( )

 
These are all deterministic as functions of two-qubit basis states, so they permute the quantum 
coordinates , , , and .  Recall that  gives the permutation that swaps 1 = 00 2 = 01 3 = 10 4 = 11 CNOT

the coordinates 3 and 4, that is,  in swap notation.  In full, we have:CNOT =  3 4( )

 
,    ,    , .F  =  3 4id ( ) F  =  1 2¬ ( ) F  =  0 ()    F  =  1 2 3 41 ( )( )

 
The functions  and  are constant.  The identity and  functions have one true and f x  =  0( ) f x  =  1( ) ¬

one false value each, so they balance values of  and .  The question posed by Deutsch is:0 1

 
How many queries are needed to tell whether  is constant from whether  is balanced?f f

 
If we just think of , suppose we try the query  and ask for .  If we get the answer "f y =  0 f y( )

 then it  could be constant-false, but  could also be the balanced identity function.  The f 0  =  0"( ) f f

answer  would leave both constant-true and negation as possibilities.  Likewise if we try f 0  =  1( )

 

 



.  The first point is that this impossibility of hitting things with one query carries forward to the y =  1

way we have to modify the problem for quantum:
 

How many queries are needed to tell  apart from ?F  or F( id ¬) F  or F( 0 1)

 
It seems like we have more of a chance because now we can query two things: , , , or .  Or in 00 01 10 11

the permutation view, we can query , , , or .  The problem is that the range of answers we y =  1 2 3 4

can get is too limited for this to help.   and  can only be  ro ;  and  can only be  or F 1( ) F 2( ) 1 2 F 3( ) F 4( ) 3

.  So suppose you query  and get the answer .  Then  could be  or  could be .  The 4 y =  3 4 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a 
straight and a cross:
 

 
A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and 
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit 
after a measurement.  The input is not  but instead ; that is, the ancilla is initialized to , not to 00 01 1

.  Here is the wavefront ("maze") diagram of how it works:0
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There is, IMHO, an "unfair" aspect of the comparison.  The classical algorithm is being allowed to 
evaluate the oracle only at basis vectors.  The quantum algorithm gets to evaluate it at a linear 
combination---indeed, it's the state
 

 =   -   +   -  + -
1

2
00 01 10 11

 
from the Fri. 12/4 lecture.  If we do the kind of linear extension of Boolean logic that was covered as the 
"Binary Linear Equations" presentation option, then we can solve the problem in one shot classically by 
evaluating at the point  and seeing where the  signs end up in the resulting vector.  FYI: 1, -1, 1, -1( ) -
https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/  
 
 
Aside: Superdense Coding
 
It is easy to rig cases  where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3

measuring both qubits.  Just define , for instance.  "Superdense coding" is a case where the F 00  =  ii( )

rigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit of 
communication.  This is impossible by Holevo's Theorem that  qubits can yield only  bits of classical n n

information.  (Another instance of this that you can input  bits of information by choosing the  ∼ n
1

2

2 CZ

gates for edges of an undirected -vertex graph  in a graph-state circuit  on  qubits, one for each n G CG n

vertex, but you can only get  bits of information out by measuring.  Hence graph-state encoding is n
majorly lossy.)  The rub is that the rigging involves the communicating parties "Alice" and "Bob" already 
having exchanged 1 bit of information in order to set them up with an entangled qubit pair.  
 
We will regard it as a nice case of the learning problem because it uses the four Pauli matrices.  We 
want to identify one of the following four possibilities exactly by the results of two qubits.
 

 

 

 

00

01

11

10
-1

-1

-1

-1

I ⊗  I X ⊗  I Z ⊗  I -iY ⊗  I = XZ ⊗  I



Here is the setting as drawn by IBM's Qiskit webpage:

 
This time the input to the whole circuit is .  Alice encodes a 2-bit message by applying one of the 00

four Pauli matrices to her qubit, which is the top line of the quantum circuit.  She sends the result to 
Bob, sending him one qubit.  From Bob's ability to tell exactly which of the four matrices she used, he 
seems to be getting 2 bits of classical information from the send of one qubit.  But there is a catch, so 
that this does not violate the information law that one qubit can carry only one classical bit in any 
measurement: Bob already got a prior qubit from Charlie that, by virtue of entanglement, counts as a 
prior conduit from Alice.  So he got 2 qubits of information from Alice in total after all.  One was in the 
past, before Alice made her elective choice among 4 options, but the conduit stayed in effect after Alice 
committed her choice.  So the channel carried two qubits of information after all.
 
What we care about is that this circuit works as advertized.  To work it out via wavefronts:
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https://qiskit.org/textbook/ch-algorithms/superdense-coding.html


Deutsch-Jozsa Extension
 
Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing 
constant functions  from balanced ones, then you can make the classical f :  0, 1   0, 1{ }n → { }

algorithms require  queries, while the quantum ones can still do it on one query to a completely 2 + 1n-1

separable superposed state.  This is a conditional problem, called a promise problem, in that it only 
applies when  is in one of those two cases.  If  is neither balanced nor constant, then "all bets are f f
off"---any answer is fine.  
 
The maze diagrams would get exponentially big, but we can track the computations via linear algebra.  
It is like Deutsch's setup except with  in place of the first , input  in place of , and H⊗n H 0 1n 01

targets (ignoring the root-2 normalizers):
 

• constant  (instead of , so that  is certainly measured.↦ +0n 0 1 +00 01 0n

• balanced  (instead of , such that  is certainly not measured.↦ ? +10 11 0n

 
The key observation is that for any , any argument , and , the amplitude in the f x ∈  0, 1{ }n b ∈  0, 1{ }

component  of the final quantum state  isxb 𝜙

.-1 -1
1

2n+1

∑
 

t ∈ 0,1{ }n

( )x•t( )f t ⊕b( )

Here  means taking the dot-products  (which is the same as ) and adding them up x • t x ⋅ ti i x ∧ ti i

modulo  (which is the same as XOR-ing them).  Well, when  this is always just zero, so the 2 x =  0n

first term is  and just drops out, leaving -1( )0

.𝜙 0 b  =  -1 -1n 1

2n+1

( )b ∑
 

t ∈ 0,1{ }n

( )f t( )

Note that the  term is independent of the sum over , so it comes out of the sum---and this is why -1( )b t
we get two equal possibilities in the original Deutsch's algorithm as well.  Ths final point is that:
 

• When  is constant, these terms are all the same, so they amplify---for the constant-false f

function they give  whereas  for constant-true.  Both of these amplitudes square to  and 1

2

-1

2

1

2

so together soak up all the output probability, so that  is measured with certainty.0n

• When  is balanced, the big sum has an equal number of  and  terms, so they all interferef +1 -1

 and cancel.  Hence  will certainly not be measured.0n

 
A randomized classical algorithm can efficiently tell with high probability whether  is constant by f

querying some random strings.  If it ever gets different answers  then definitely  is not f y  ≠  f y'( ) ( ) f
constant.  If it always gets the same answer, then since any balanced function gives 50-50 probability 
on random strings, it can quickly figure that  is constant.  But it is still the case that a deterministic f
algorithm needs exponentially many queries and hence exponential time.

 

 



 
Simon's Algorithm
 
Covering this in full would need a 6th lecture in the last 2 weeks.  The big point is that Daniel Simon 
designed a task that classical randomized algorithms provably require exponential time for---in their 
restricted classical setting---but where quantum algorithms can do it in polynomial time using some 
advantages of their setting.   FYI, see https://rjlipton.wordpress.com/2011/11/14/more-quantum-
chocolate-boxes/ for my attempt to find a real-valued analogue of Simon's problem that a similarly-
liberated, but still classical, randomized algorithm can do after all in polynomial time. 
 
Fair or not, and the oracle-dependent nature of the problem notwithstanding, Simon's algorithm is what 
inspired Peter Shor to realize that if he substituted  for Deutsch-Jozsa and Simon's use of , QFTn H⊗n

then he could make it impact the (group-theoretic) periodicity in the powering function modulo a number 
, in a way that allows finding  and  with high probability in roughly-quadratic quantum time.  M =  pq p q

That is, he classified FACTORING as belonging to .  This plus the de-randomization of PRIMES BQP

from co-  to  in 2002 and UGAP (which is the graph-accessibility problem for undirected RP ∩ RP P

graphs) from randomized logspace to  in 2004 completes our current top-level knowledge:DLOG
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