
CSE491/596 Lecture Fri. 12/10/21: Visualizing Small-Scale Quantum Applications
 
For the textbook, I devised a "maze" visualization of quantum amplification and interference for 
applications with up to 3 or so qubits.  I found that the brilliant Dorit Aharonov had used the same idea.  
Most basic gate matrices have the following "balance" property: all nonzero entries have the same 

magnitude, so normalizing factors like  can be set aside.  Then the Hadamard, CNOT, Toffoli, and 1

2

Pauli gates (ignoring the global  factor in ) give just entries  or , which become the only possible i Y +1 -1

values of any Feynman path, which means a multiplicative term in the ultimate matrix product.  That 
makes it easier to sum the results of paths.  The index values  become "locations" in the m, l, k, j, i, …

wavefront as it flows for time .  Since the paths are discrete we can picture "lab mice" running through s
the maze.  The humorous treatment in section 7.5 illustrates:
 

1. superposition
2. interference
3. amplification
4. measurement
5. the system's quantum state after a measurement.

 
One nice thing is that you can read the mazes left-to-right, same as the circuits.  Here is the 

 entangling circuit example:H +  CNOT

 
No interference or amplification is involved here---the point is that if you enter at , then  and 00 00

 are the only places you can come out---and they have equal weight.  To see interference, you can 11

string the "maze gadgets" for two Hadamard gates together:
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In linear-algebra terms, all that happened at lower right was  giving .  But the wave 1 ⋅ 1 +  - 1 ⋅ 1 0

interference being described that way is a real physical phenomenon.  Even more, according to 
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse" 
(which can be a photon after going through a beam-splitter).  One of those universes has "Anti-Phil", 
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they 
fight to mutual annihilation.
 
 
 
 
Examples in Chapter 8, "Deutsch's Algorithm"
 
David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing 
while he and I were graduate students at Oxford in the mid-1980s.  At first, he claimed quantum 
computers could solve the Halting Problem in finite time.  Fellows of Oxford's Mathematical Institute 
refuted the claim.  But it was not crazy: a year ago it was proved that a binary quantum system of 
"interactive provers" can (kind-of-)solve the Halting Problem in finite time.  (My review of the paper is at 
https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/)  Per my memory of 
observing some meetings about it, the gap in Deutsch's argument had to do with properties of 
probability measures based on infinite binary sequences. 
 
So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that 
quantum computers can do and classical ones cannot.  (Well, unless the playing field is leveled for 
them...but before we argue about it, let's see the task.)  The task is a learning problem, a kind of 
interaction we haven't covered until this last day.  Instead of "input , compute , a learning x y =  f x "( )

problem is to determine facts about an initially-unknown entity  that you can query.  f
 

1. Oracle Turing machines give a classic way to define this kind of problem.  For oracle functions 
 or languages  drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM  that on input  (for large enough ) can distinguish what  is in time M 0n n A

(say) polynomial in ?  The computation  can learn about  by making queries  on n M 0A n A y

selected strings  and observing the answers .  y A y( )
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2. One can also define oracle circuits that have special oracle gates with some number  of m

input wires and enough output wires to give the answer  on any .f y( ) y ∈  0, 1{ }m

3. An ordinary electrical test kit behaves that way.  It is a circuit with a place(s) for you to insert one 
or more (possibly-defective) electrical components .  The test results should diagnose A

electrical facts about .A
4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms 

work this way.  They involve an oracle function  given in reversible form f :  0, 1  0, 1{ }n → { }r

as the function defined by:F : 0, 1  0, 1  { }n+r → { }n+r

 
. F x, z  =  x, f x  ⊕  z( ) ( ( ) )

 
Usually  is  and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

.  In the simplest case ,  is a two-(qu)bit function.  Some examples:xf x( ) n =  r =  1 F
 

• If  is the identity function, , then .f f x  =  x( ) F x, z  = x, x⊕ z  =  CNOT x, z  ( ) ( ) ( )

• If , then : , , , .f x = ¬x( ) F x, z = x, x ↔ z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 10( ) F 11 = 11( )

• If  is always false, i.e., , then  is the identity function.f f x  =  0( ) F

• If , then , so , , , f x = 1( ) F x, z = x, ¬z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 11( ) F 11 = 10.( )

 
These are all deterministic as functions of two-qubit basis states, so they permute the quantum 
coordinates , , , and .  Recall that  gives the permutation that swaps 1 = 00 2 = 01 3 = 10 4 = 11 CNOT

the coordinates 3 and 4, that is,  in swap notation.  In full, we have:CNOT =  3 4( )

 
,    ,    , .F  =  3 4id ( ) F  =  1 2¬ ( ) F  =  0 ()    F  =  1 2 3 41 ( )( )

 
The functions  and  are constant.  The identity and  functions have one true and f x  =  0( ) f x  =  1( ) ¬

one false value each, so they balance values of  and .  The question posed by Deutsch is:0 1

 
How many queries are needed to tell whether  is constant from whether  is balanced?f f

 
If we just think of , suppose we try the query  and ask for .  If we get the answer "f y =  0 f y( )

 then it  could be constant-false, but  could also be the balanced identity function.  The f 0  =  0"( ) f f

answer  would leave both constant-true and negation as possibilities.  Likewise if we try f 0  =  1( )

.  The first point is that this impossibility of hitting things with one query carries forward to the y =  1

way we have to modify the problem for quantum:
 

How many queries are needed to tell  apart from ?F  or F( id ¬) F  or F( 0 1)

 
It seems like we have more of a chance because now we can query two things: , , , or .  Or in 00 01 10 11

the permutation view, we can query , , , or .  The problem is that the range of answers we y =  1 2 3 4

can get is too limited for this to help.   and  can only be  ro ;  and  can only be  or F 1( ) F 2( ) 1 2 F 3( ) F 4( ) 3

 

 



.  So suppose you query  and get the answer .  Then  could be  or  could be .  The 4 y =  3 4 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a 
straight and a cross:
 

 
A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and 
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit 
after a measurement.  The input is not  but instead ; that is, the ancilla is initialized to , not to 00 01 1

.  Here is the wavefront ("maze") diagram of how it works:0

 
There is, IMHO, an "unfair" aspect of the comparison.  The classical algorithm is being allowed to 
evaluate the oracle only at basis vectors.  The quantum algorithm gets to evaluate it at a linear 
combination---indeed, it's the state
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from the Fri. 12/4 lecture.  If we do the kind of linear extension of Boolean logic that was covered as the 
"Binary Linear Equations" presentation option, then we can solve the problem in one shot classically by 
evaluating at the point  and seeing where the  signs end up in the resulting vector.  FYI: 1,-1, 1,-1( ) -
https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/  
 
 
Superdense Coding
 
It is easy to rig cases  where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3

measuring both qubits.  Just define , for instance.  "Superdense coding" is a case where the F 00  =  ii( )

rigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit of 
communication.  This is impossible by Holevo's Theorem that  qubits can yield only  bits of classical n n

information.  (Another instance of this that you can input  bits of information by choosing the  ∼ n
1

2

2 CZ

gates for edges of an undirected -vertex graph  in a graph-state circuit  on  qubits, one for each n G CG n

vertex, but you can only get  bits of information out by measuring.  Hence graph-state encoding is n
majorly lossy.)  The rub is that the rigging involves the communicating parties "Alice" and "Bob" already 
having exchanged 1 bit of information in order to set them up with an entangled qubit pair.  
 
We will regard it as a nice case of the learning problem because it uses the four Pauli matrices.  We 
want to identify one of the following four possibilities exactly by the results of two qubits.
 

 
This time the input is .  To work it out via wavefronts:00
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Deutsch-Jozsa Extension
 
Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing 
constant functions  from balanced ones, then you can make the classical f :  0, 1   0, 1{ }n → { }

algorithms require  queries, while the quantum ones can still do it on one query to a completely 2 + 1n-1

separable superposed state.  This is a conditional problem, called a promise problem, in that it only 
applies when  is in one of those two cases.  If  is neither balanced nor constant, then "all bets are f f

off"---any answer is fine, even .   ¯ \ _ ツ _ / ¯ ( )

 
The maze diagrams would get exponentially big, but we can track the computations via linear algebra.  
It is like Deutsch's setup except with  in place of the first , input  in place of , and H⊗n H 0 1n 01

targets (ignoring the  normalizers):2

 
• constant  (instead of , so that  is certainly measured.↦ +0n 0 1 +00 01 0n

• balanced  (instead of , such that  is certainly not measured.↦ ? +10 11 0n

 
The key observation is that for any , any argument , and , the amplitude in the f x ∈  0, 1{ }n b ∈  0, 1{ }

component  of the final quantum state  isxb 𝜙
 

.-1 -1
1

2n+1

∑
 

t ∈ 0,1{ }
n

( )x•t( )f t ⊕b( )

 
Here  means taking the dot-products  (which is the same as ) and adding them up x • t x ⋅ ti i x ∧ ti i

modulo  (which is the same as XOR-ing them).  Well, when  this is always just zero, so the 2 x =  0n

first term is  and just drops out, leaving -1( )0
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.𝜙 0 b  =  -1 -1n 1

2n+1

( )b ∑
 

t ∈ 0,1{ }n

( )f t( )

 
Note that the  term is independent of the sum over , so it comes out of the sum---and this is why -1( )b t
we get two equal possibilities in the original Deutsch's algorithm as well.  Ths final point is that:
 

• When  is constant, these terms are all the same, so they amplify---giving  for the constant-f
1

2

false function and  for constant-true.  Both of these amplitudes square to  and so together -1

2

1

2

soak up all the output probability, so that  is measured with certainty.0n

• When  is balanced, the big sum has an equal number of  and  terms, so they all interferef +1 -1

 and cancel.  Hence  will certainly not be measured.0n

 
Added: A randomized classical algorithm can efficiently tell with high probability whether  is constant f

by querying some random strings.  If it ever gets different answers  then definitely  is not f y  ≠  f y'( ) ( ) f
constant.  (So, under the condition of the "promised problem," it must be balanced.)  If it always gets 
the same answer, then since any balanced function gives 50-50 probability on random strings, it can 
quickly figure that  is constant.  But it is still the case that a deterministic algorithm needs f
exponentially many queries and hence exponential time.
 
 
Brief Conclusion: Simon's Algorithm to Shor's to the Present
 
Daniel Simon extended Deutsch-Jozsa to a problem where one can prove that a classical randomized 
algorithm needs exponential time.  I still have reservations about whether the classical setting is fair 
(FYI, see https://rjlipton.wordpress.com/2011/11/14/more-quantum-chocolate-boxes/), but there is no 
doubt about what it led to.  Peter Shor in 1993 realized that if he substituted  for Deutsch-Jozsa QFTn

and Simon's use of , then he could make it impact the (group-theoretic) periodicity in the powering H⊗n

function modulo a number , in a way that allows finding  and  with high probability in roughly-M =  pq p q

quadratic quantum time.  That is, he classified FACTORING as belonging to .  This plus the de-BQP

randomization of PRIMES from co-  to  in 2002 and UGAP (which is the graph-accessibility RP ∩ RP P

problem for undirected graphs) from randomized logspace to  in 2004 completes our current top-level L

knowledge about the landscape of major complexity classes:
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Known: 
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(and , etc.)EXP ≠  REC ≠  RE


