
Deutsch's AlgorithmDeutsch's Algorithm
  
David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computingDavid Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing  
while he and I were graduate students at Oxford in the mid-1980s.  At first, he claimed quantumwhile he and I were graduate students at Oxford in the mid-1980s.  At first, he claimed quantum  
computers could solve the Halting Problem in finite time.  Fellows of Oxford's Mathematical Institutecomputers could solve the Halting Problem in finite time.  Fellows of Oxford's Mathematical Institute  
refuted the claim.  But it was not crazy: a year ago it was proved that a binary quantum system ofrefuted the claim.  But it was not crazy: a year ago it was proved that a binary quantum system of  
"interactive provers" "interactive provers" cancan (kind-of-)solve the Halting Problem in finite time.  (My review of the paper is at (kind-of-)solve the Halting Problem in finite time.  (My review of the paper is at  
https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/)  Per my memory ofhttps://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/)  Per my memory of  
observing some meetings about it, the gap in Deutsch's argument had to do with properties ofobserving some meetings about it, the gap in Deutsch's argument had to do with properties of  
probability measures based on infinite binary sequences.probability measures based on infinite binary sequences.  
  
So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task thatSo Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that  
quantum computers can do and classical ones cannot.  (Well, unless the playing field is leveled forquantum computers can do and classical ones cannot.  (Well, unless the playing field is leveled for  
them...but before we argue about it, let's see the task.)  The task is a them...but before we argue about it, let's see the task.)  The task is a learning problemlearning problem, a kind of, a kind of  
interaction we haven't covered until this last day.  Instead of "input interaction we haven't covered until this last day.  Instead of "input , compute , compute , a learning, a learning  xx y y ==  f f xx ""(( ))

problem is to determine facts about an initially-unknown entity problem is to determine facts about an initially-unknown entity  that you can  that you can queryquery..    ff
  

1. 1. Oracle Turing machinesOracle Turing machines give a classic way to define this kind of problem.  For oracle functions give a classic way to define this kind of problem.  For oracle functions  
 or languages  or languages  drawn from a limited class---such as subclasses of the regular languages--- drawn from a limited class---such as subclasses of the regular languages---ff AA

can we design an OTM can we design an OTM  that on input  that on input  (for large enough  (for large enough ) can distinguish what ) can distinguish what  is in time is in time  MM 00nn nn AA

(say) polynomial in (say) polynomial in ?  The computation ?  The computation  can learn about  can learn about  by making queries  by making queries  on on  nn MM 00AA nn AA yy

selected strings selected strings  and observing the answers  and observing the answers ..    yy AA yy(( ))

2. 2. One can also define One can also define oracle circuitsoracle circuits that have special  that have special oracle gatesoracle gates with some number  with some number  of of  mm

input wires and enough output wires to give the answer input wires and enough output wires to give the answer  on any  on any ..ff yy(( )) y y ∈∈   00,, 11{{ }}mm

3. 3. An ordinary electrical test kit behaves that way.  It is a circuit with a place(s) for you to insert oneAn ordinary electrical test kit behaves that way.  It is a circuit with a place(s) for you to insert one  
or more (possibly-defective) electrical components or more (possibly-defective) electrical components .  The test results should diagnose.  The test results should diagnose  AA

electrical facts about electrical facts about ..AA
4. 4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithmsQuantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms  

work this way.  They involve an work this way.  They involve an oracle functionoracle function   given in  given in reversible formreversible form  ff ::   00,, 11   00,, 11{{ }}nn →→ {{ }}rr

as the function as the function defined by:defined by:FF :: 00,, 11   00,, 11   {{ }}n+rn+r →→ {{ }}n+rn+r

  
..  FF xx,, zz   ==   xx,, ff xx   ⊕⊕  z z(( )) (( (( )) ))

  
Usually Usually  is  is  and the comma is just concatenation (i.e., tensor product) so the output is just and the comma is just concatenation (i.e., tensor product) so the output is just  zz 00rr

.  In the simplest case .  In the simplest case , ,  is a two-(qu)bit function.  Some examples: is a two-(qu)bit function.  Some examples:xfxf xx(( )) n n ==  r  r ==  1 1 FF
  

• • If If  is the identity function,  is the identity function, , then , then ..ff ff xx   ==  x x(( )) FF xx,, zz   == xx,, xx⊕⊕ zz   ==   CNOTCNOT xx,, zz   (( )) (( )) (( ))

• • If If , then , then : : , , , , , , ..ff xx == ¬¬xx(( )) FF xx,, zz == xx,, xx ↔↔ zz(( )) (( )) FF 0000 == 0101(( )) FF 0101 == 0000(( )) FF 1010 == 1010(( )) FF 1111 == 1111(( ))

• • If If  is always false, i.e.,  is always false, i.e., , then , then  is the identity function. is the identity function.ff ff xx   ==  0 0(( )) FF

• • If If , then , then , so , so , , , , , , ff xx == 11(( )) FF xx,, zz == xx,, ¬¬zz(( )) (( )) FF 0000 == 0101(( )) FF 0101 == 0000(( )) FF 1010 == 1111(( )) FF 1111 == 10.10.(( ))

  
These are all deterministic as functions of two-qubit basis states, so they permute the quantumThese are all deterministic as functions of two-qubit basis states, so they permute the quantum  

  

  



coordinates coordinates , , , , , and , and .  Recall that .  Recall that  gives the permutation that swaps gives the permutation that swaps  11 == 0000 22 == 0101 33 == 1010 44 == 1111 CNOTCNOT

the coordinates 3 and 4, that is, the coordinates 3 and 4, that is,  in swap notation.  In full, we have: in swap notation.  In full, we have:CNOTCNOT  ==   3 43 4(( ))

  
,    ,    ,    ,    , , ..FF   ==   3 43 4idid (( )) FF   ==   1 21 2¬¬ (( )) FF   ==   00 (())    F   F   ==   1 21 2 3 43 411 (( ))(( ))

  
The functions The functions  and  and  are  are constantconstant.  The identity and .  The identity and  functions have one true and functions have one true and  ff xx   ==  0 0(( )) ff xx   ==  1 1(( )) ¬¬

one false value each, so they one false value each, so they balancebalance values of  values of  and  and .  The question posed by Deutsch is:.  The question posed by Deutsch is:00 11

  
How many queries are needed to tell whether How many queries are needed to tell whether  is constant from whether  is constant from whether  is balanced? is balanced?ff ff

  
If we just think of If we just think of , suppose we try the query , suppose we try the query  and ask for  and ask for .  If we get the answer ".  If we get the answer "ff y y ==  0 0 ff yy(( ))

 then it  then it  could be constant-false, but  could be constant-false, but  could also be the balanced identity function.  The could also be the balanced identity function.  The  ff 00   ==  0" 0"(( )) ff ff

answer answer  would leave both constant-true and negation as possibilities.  Likewise if we try would leave both constant-true and negation as possibilities.  Likewise if we try  ff 00   ==  1 1(( ))

.  The first point is that this impossibility of hitting things with one query carries forward to the.  The first point is that this impossibility of hitting things with one query carries forward to the  y y ==  1 1

way we have to modify the problem for quantum:way we have to modify the problem for quantum:
  

How many queries are needed to tell How many queries are needed to tell  apart from  apart from ??FF  or F or F(( idid ¬¬)) FF  or F or F(( 00 11))

  
It seems like we have more of a chance because now we can query two things: It seems like we have more of a chance because now we can query two things: , , , , , or , or .  Or in.  Or in  0000 0101 1010 1111

the permutation view, we can query the permutation view, we can query , , , , , or , or .  The problem is that the range of answers we.  The problem is that the range of answers we  y y ==  1 1 22 33 44

can get is too limited for this to help.  can get is too limited for this to help.   and  and  can only be  can only be  ro  ro ; ;  and  and  can only be  can only be  or or  FF 11(( )) FF 22(( )) 11 22 FF 33(( )) FF 44(( )) 33

.  So suppose you query .  So suppose you query  and get the answer  and get the answer .  Then .  Then  could be  could be  or  or  could be  could be .  The.  The  44 y y ==  3 3 44 FF FFidid FF FF11

basic problem for a classical algorithm is that every quadrant of the following diagram has both abasic problem for a classical algorithm is that every quadrant of the following diagram has both a  
straight and a cross:straight and a cross:
  

  
A quantum circuit, however, can make one query to an oracle gate for any of these four functions, andA quantum circuit, however, can make one query to an oracle gate for any of these four functions, and  
can distinguish a member of the first pair from a member of the second pair by the answer to one qubitcan distinguish a member of the first pair from a member of the second pair by the answer to one qubit  
after a measurement.  The input is not after a measurement.  The input is not  but instead  but instead ; that is, the ancilla is initialized to ; that is, the ancilla is initialized to , not to, not to  0000 0101 11

.  Here is the wavefront ("maze") diagram of how it works:.  Here is the wavefront ("maze") diagram of how it works:00
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There is, IMHO, an "unfair" aspect of the comparison.  The classical algorithm is being allowed toThere is, IMHO, an "unfair" aspect of the comparison.  The classical algorithm is being allowed to  
evaluate the oracle only at basis vectors.  The quantum algorithm gets to evaluate it at a linearevaluate the oracle only at basis vectors.  The quantum algorithm gets to evaluate it at a linear  
combination---indeed, it's the statecombination---indeed, it's the state
  

  ==     --     ++     --   ++  --
11

22
0000 0101 1010 1111

  
from the Fri. 12/4 lecture.  If we do the kind of linear extension of Boolean logic that was covered as thefrom the Fri. 12/4 lecture.  If we do the kind of linear extension of Boolean logic that was covered as the  
"Binary Linear Equations" presentation option, then we can solve the problem in one shot classically by"Binary Linear Equations" presentation option, then we can solve the problem in one shot classically by  
evaluating at the point evaluating at the point  and seeing where the  and seeing where the  signs end up in the resulting vector.  FYI: signs end up in the resulting vector.  FYI:  11,,--11,, 11,,--11(( )) --
https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/    
  
  
Aside: Superdense CodingAside: Superdense Coding
  
It is easy to rig cases It is easy to rig cases  where you can distinguish them exactly by asking one query and where you can distinguish them exactly by asking one query and  FF ,, FF ,, FF ,, FF00 11 22 33

measuring both qubits.  Just define measuring both qubits.  Just define , for instance.  "Superdense coding" is a case where the, for instance.  "Superdense coding" is a case where the  FF 0000   ==  i iii(( ))

rigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit ofrigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit of  
communication.  This is impossible by communication.  This is impossible by Holevo's TheoremHolevo's Theorem that  that  qubits can yield only  qubits can yield only  bits of classical bits of classical  nn nn

information.  (Another instance of this that you can input information.  (Another instance of this that you can input  bits of information by choosing the  bits of information by choosing the   ∼∼ nn
11

22
22 CZCZ

gates for edges of an undirected gates for edges of an undirected -vertex graph -vertex graph  in a graph-state circuit  in a graph-state circuit  on  on  qubits, one for each qubits, one for each  nn GG CCGG nn

vertex, but you can only get vertex, but you can only get  bits of information out by measuring.  Hence graph-state encoding is bits of information out by measuring.  Hence graph-state encoding is  nn
majorly majorly lossylossy.)  The rub is that the rigging involves the communicating parties "Alice" and "Bob" already.)  The rub is that the rigging involves the communicating parties "Alice" and "Bob" already  
having exchanged 1 bit of information in order to set them up with an entangled qubit pair.having exchanged 1 bit of information in order to set them up with an entangled qubit pair.    
  
We will regard it as a nice case of the learning problem because it uses the four Pauli matrices.  WeWe will regard it as a nice case of the learning problem because it uses the four Pauli matrices.  We  
want to identify one of the following four possibilities want to identify one of the following four possibilities exactlyexactly by the results of  by the results of twotwo qubits. qubits.
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This time the input is This time the input is .  To work it out via wavefronts:.  To work it out via wavefronts:0000

  

  
  
Deutsch-Jozsa ExtensionDeutsch-Jozsa Extension
  
Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishingGetting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing  
constantconstant functions  functions  from  from balancedbalanced ones, then you can make the classical ones, then you can make the classical  ff ::   00,, 11     00,, 11{{ }}nn →→ {{ }}

algorithms require algorithms require  queries, while the quantum ones can still do it on  queries, while the quantum ones can still do it on oneone query to a completely query to a completely  22 ++ 11n-1n-1

separable superposed state.  This is a conditional problem, called a separable superposed state.  This is a conditional problem, called a promise problempromise problem, in that it only, in that it only  
applies when applies when  is in one of those two cases.  If  is in one of those two cases.  If  is neither balanced nor constant, then "all bets are is neither balanced nor constant, then "all bets are  ff ff

off"---any answer is fine, even off"---any answer is fine, even ..      ¯̄ \\ __ ツツ __ // ¯̄  (( ))

  
The maze diagrams would get exponentially big, but we can track the computations via linear algebra.The maze diagrams would get exponentially big, but we can track the computations via linear algebra.    
It is like Deutsch's setup except with It is like Deutsch's setup except with  in place of the first  in place of the first , input , input  in place of  in place of , and, and  HH⊗n⊗n HH 00 11nn 0101

targets (ignoring the targets (ignoring the  normalizers): normalizers):22
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• • constant constant  (instead of  (instead of , so that , so that  is certainly measured. is certainly measured.↦↦ ++00nn 00 11 ++0000 0101 00nn

• • balanced balanced  (instead of  (instead of , such that , such that  is certainly  is certainly notnot measured. measured.↦↦ ?? ++1010 1111 00nn

  
The key observation is that for any The key observation is that for any , any argument , any argument , and , and , the amplitude in the, the amplitude in the  ff x x ∈∈   00,, 11{{ }}nn b b ∈∈   00,, 11{{ }}

component component  of the final quantum state  of the final quantum state  is isxbxb 𝜙𝜙
  

..--11 --11
11

22n+1n+1

∑∑
  

t ∈ t ∈ 0,10,1{{ }}nn

(( ))x•tx•t(( ))ff tt ⊕b⊕b(( ))

  
Here Here  means taking the dot-products  means taking the dot-products  (which is the same as  (which is the same as ) and adding them up) and adding them up  xx •• tt xx ⋅⋅ ttii ii xx ∧∧ ttii ii

modulo modulo  (which is the same as XOR-ing them).  Well, when  (which is the same as XOR-ing them).  Well, when  this is always just zero, so the this is always just zero, so the  22 x x ==  0 0nn

first term is first term is  and just drops out, leaving and just drops out, leaving  --11(( ))00

  

..𝜙𝜙 00 bb   ==   --11 --11nn 11

22n+1n+1

(( ))bb ∑∑
  

t ∈ t ∈ 0,10,1{{ }}nn

(( ))ff tt(( ))

  
Note that the Note that the  term is independent of the sum over  term is independent of the sum over , so it comes out of the sum---and this is why, so it comes out of the sum---and this is why  --11(( ))bb tt
we get two equal possibilities in the original Deutsch's algorithm as well.  Ths final point is that:we get two equal possibilities in the original Deutsch's algorithm as well.  Ths final point is that:
  

• • When When  is  is constantconstant, these terms are all the same, so they , these terms are all the same, so they amplifyamplify---giving ---giving  for the constant- for the constant-ff
11

22

false function and false function and  for constant-true.  Both of these amplitudes square to  for constant-true.  Both of these amplitudes square to  and so together and so together  -1-1

22

11

22

soak up all the output probability, so that soak up all the output probability, so that  is measured with certainty. is measured with certainty.00nn

• • When When  is  is balancedbalanced, the big sum has an equal number of , the big sum has an equal number of  and  and  terms, so they all  terms, so they all interfereinterfereff ++11 --11

 and  and cancelcancel.  Hence .  Hence  will certainly not be measured. will certainly not be measured.00nn

  
Added: A Added: A randomizedrandomized classical algorithm can efficiently tell with high probability whether  classical algorithm can efficiently tell with high probability whether  is constant is constant  ff

by querying some random strings.  If it ever gets different answers by querying some random strings.  If it ever gets different answers  then definitely  then definitely  is not is not  ff yy   ≠≠  f f y'y'(( )) (( )) ff
constant.  (So, under the condition of the "promised problem," it must be balanced.)  If it always getsconstant.  (So, under the condition of the "promised problem," it must be balanced.)  If it always gets  
the same answer, then since any balanced function gives 50-50 probability on random strings, it canthe same answer, then since any balanced function gives 50-50 probability on random strings, it can  
quickly figure that quickly figure that  is constant.  But it is still the case that a deterministic algorithm needs is constant.  But it is still the case that a deterministic algorithm needs  ff
exponentially many queries and hence exponential time.exponentially many queries and hence exponential time.
  
  
Simon's AlgorithmSimon's Algorithm
  
Did not get time to cover---it would have needed a 6th lecture in the last 2 weeks---but FYI, seeDid not get time to cover---it would have needed a 6th lecture in the last 2 weeks---but FYI, see
https://rjlipton.wordpress.com/2011/11/14/more-quantum-chocolate-boxes/https://rjlipton.wordpress.com/2011/11/14/more-quantum-chocolate-boxes/
for my attempt to find a real-valued classical analogue of Simon's problem that works around thefor my attempt to find a real-valued classical analogue of Simon's problem that works around the  
conditions of Simon's proof that a classical conditions of Simon's proof that a classical randomizedrandomized algorithm needs exponential time for it.  That it algorithm needs exponential time for it.  That it  

  

  



defeats classical randomized algorithms is the point---though the classical algorithms are still (IMHO,defeats classical randomized algorithms is the point---though the classical algorithms are still (IMHO,  
unfairly) hobbled by being limited to querying binary strings (which are basis states in the quantumunfairly) hobbled by being limited to querying binary strings (which are basis states in the quantum  
case).case).    
  
Fair or not, and the oracle-dependent nature of the problem notwithstanding, Simon's algorithm is whatFair or not, and the oracle-dependent nature of the problem notwithstanding, Simon's algorithm is what  
inspired Peter Shor to realize that if he substituted inspired Peter Shor to realize that if he substituted  for Deutsch-Jozsa and Simon's use of  for Deutsch-Jozsa and Simon's use of ,,  QFTQFTnn HH⊗n⊗n

then he could make it impact the (group-theoretic) periodicity in the powering function modulo a numberthen he could make it impact the (group-theoretic) periodicity in the powering function modulo a number  
, in a way that allows finding , in a way that allows finding  and  and  with high probability in roughly-quadratic quantum time. with high probability in roughly-quadratic quantum time.    M M ==  pq pq pp qq

That is, he classified That is, he classified FACTORINGFACTORING as belonging to  as belonging to .  This plus the .  This plus the de-randomizationde-randomization of  of PRIMESPRIMES  BQPBQP

from from co-co-  to  to  in 2002 and  in 2002 and UGAPUGAP (which is the graph-accessibility problem for undirected (which is the graph-accessibility problem for undirected  RPRP  ∩∩ RPRP PP

graphs) from randomized logspace to graphs) from randomized logspace to  in 2004 completes our current top-level knowledge about the in 2004 completes our current top-level knowledge about the  LL

landscape of major complexity classes:landscape of major complexity classes:
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𝜃 𝜃 >>  45 45∘∘
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means means A A ≤≤  B Bpp
mm

REGREG

∃∃qq ∀∀qq

Note differences fromNote differences from
the unbounded the unbounded 
computability case: computability case: 
NP intersect co-NP isNP intersect co-NP is
not known (or believed) not known (or believed) 
to equal P, and the to equal P, and the 
quantifiers are quantifiers are length-length-
boundedbounded by a polynomial. by a polynomial.

FACTFACT

PRIMESPRIMES

SAT, G3CSAT, G3C TAUTTAUT
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BPP BP

P
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RPRP co-RPco-RP
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NLNL GAPGAP

CVPCVP

UGAPUGAP

PSPACEPSPACE

TQBFTQBF

EXPEXP
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co-REco-RE

Known: Known: 
EXPEXP  ≠≠   PP,,

PSPACEPSPACE  ≠≠   NLNL

LL  ≠≠   REGREG

(and (and , etc.), etc.)EXPEXP  ≠≠   RECREC  ≠≠   RERE


