
CSE491/596 Last lecture: Shor's Algorithm and Final Summation

Recall the Quantum Fourier Transform is just the Discrete Fourier Transform with exponential scaling:

Since this is a Hermitian matrix, the inverse QFT simply conjugates all the entries, which is the same as
using instead. 𝜔 = e-2𝜋i/N

Periodic Functions

The important example of a periodic function is modular exponentiation:

.f x = a Ma() x mod

Here is a number in that is relatively prime to . This means that does not a 0, 1, … , M - 1{ } M a

share a prime divisor with . When is the product of two different primes and , this simply M m = pq p q

means that is not divisible by or by . If and did share a divisor , then would always be a a p q a M p ax

multiple of , and is also a multiple of because divides too. So you would not get all p a Mx mod p p M

of the possible values modulo . When is relatively prime to , what you always get is a number M a M

relatively prime to . This is worth spelling out more than the text does:M

Definition: .G = 1 ∪ a : 1 < a < M and a is relatively prime to MM { } { }

Theorem: forms a group under multiplication. GM

When is a product of two primes, the size of is exactly . (The general name M = pq GM p - 1 q - 1()()

for the size of is the totient function of , devised by and often named for the mathematician GM M

Leonhard Euler.) The consequence of being a group that we need is:GM

Corollary: For all there is a positive integer such that . a ∈ GM r a ≡ 1 Mr mod

The least such is exactly the period of that we want to find. It always divides , so when r f xa() |G |M

 we get that divides . You might think this should narrow down the possibilities, M = pq r p - 1 q - 1()()
but:

• We don't actually get the value factored for us---we don't even know m = p - 1 q - 1()() m

because we don't know how to factor to begin with.M =: pq

• Compared to the number of bits or digits of , which is the complexity parameter we care n M

about, the range of numbers less than we might have to check is exponential in .m n

• By the way, the number in can be exponential in , so it looks like it takes too long to x ax n

compute to begin with. However, by iterated squaring modulo we can compute the f xa() M

following values in time: , , nO 2 a = a M1
2 mod a = a M = a M2

2
2 mod 4 mod

, , and so on up to a = a M = a M3
2
2 mod 8 mod a = a M = a M4

2
3 mod 16 mod

. Then we need only multiply together those such that a = a M = a Mn-1
2
n-2 mod n-1 mod ai

 as a binary number includes . This needs only multiplications and mod- reductions of x 2i 2n M

-bit numbers, so it is doable in time using an -time integer multiplication n nO 2 nO()

algorithm. (Or we can say time using the simple multiplication algorithm. The RSA O n3

cryptosystem uses modular exponentiation too---and this time is largely why your credit card
needed a chip.)

Nevertheless, if we do find the period ---for a "good" value which we stand a fine chance of picking at r a

random from ---then it was known long before Peter Shor found his algorithm in 1993 that we can GM

go on to find and by classical efficient means. p q

Theorem: There is a classical randomized algorithm that, when provided a function oracle

 some integer multiple of the period of , finds a factor of in expected g M, a =() f Ma mod M

polynomial time. That is, Factoring is in . BPPg

The proof is the entire content of Chapter 12. Lipton and I bundled this up into a separate chapter so
that instructors would have the freedom to skip it, as we'll do now. So we can focus on the task of
finding (or at least a multiple of) via quantum means.r r

Shor's Theorem: Factoring is in .BQP

Steps of Shor's Algorithm

1. Given , use classical randomness to guess a number between and .M a 2 M - 1

2. Use Euclid's algorithm to find . If it gives a number , then "ka-ching!"---we got a, Mgcd() c > 1

a divisor of . Since both and are below , we can recursively factor both of them.M c M / c M / 2

3. If it gives , then we know . In the important case, this had a, M = 1gcd() a ∈ GM M = pq

probability and so was pretty likely anyway. By the way, Euclid's algorithm also gives p-1 q-1

pq

()()

you a number such that . But it doesn't give you this as a power of (to wit, b ab = 1 Mmod b a

as), which is what you'd need to get . b = a Mr-1 mod r

4. To give some slack, we choose a number and expand the domain of to Q = 2 ≈ Mℓ 2 f xa()

include in the interval up to , not just up to . The range is still to . So our x Q - 1 M - 1 1 M - 1

domain is in the range 0 to , which uses bits. This gives us quadratically many x 2 - 1ℓ ℓ ≈ 2n
"ripples" of the period, which in turn helps the trigonometric analysis in the body of the proof.

5. The quantum circuit begins with -many Hadamard gates, followed by a quantum q

implementation of the classical gates needed to compute modular exponentiation. This nO 1()

produces the functionally superposed quantum state

.𝛷 = f

1

N

∑

x∈ 0,1{ }ℓ

xf xa()

6. Apply the QFT (or its inverse) to the first qubits. ℓ

7. Then measure the whole result. Curiously, we ignore what happens in the " " portion of the f xa()

circuit. The fact that those final qubits were entangled with the first qubits is enough. So we n ℓ

let our output be the first bits of the measured result over the binary standard basis.y ℓ

My own quantum circuit simulator draws an ASCII picture of the Shor circuit, here for M = 21 = 3*7

(where I guessed), which gave since is the next power of after :a = 5 ℓ = 9 2 = 5129 2 M = 4412

But there isn't any more to the quantum circuitry than that. It's all simply: compute a giant functional
superposition and apply QFT (or its inverse) to it.

The analysis establishes that with pretty good probability already in one shot, the output reveals the y

period by a followup classical means. And with initial good probability over the choice of , the r a

resulting value unlocks the key to factoring . We will focus on understanding why the measured r M y

has much to do with the period to begin with. Then basic point---which has been known for centuries--r
-is that the Fourier transform converts periodic data to peaked data. Here is how the simple quantum
circuit above applies this fact.

The Intuition (See also Scott Aaronson, https://www.scottaaronson.com/blog/?p=208)

Let stand for the true period of . Let be any element of the group of size . Then r f a GM p - 1 q - 1()()

we will picture as a "crazy clock" that jumps units counter-clockwise at each time step. a a

https://www.scottaaronson.com/blog/?p=208

With fairly high probability, measurement yields a multiple of . The true is the least of the multiples. r r

It is individually the most likely value returned and is also returned with reasonable probability. A bad r
might work anwyay. We can tell whether works by seeing if the classical part gives us or , else we r p q
just try the quantum process again.

The run of my simulator on and succeeded on the second try:M = 21 a = 5

a

𝛼t

r1

rjr2

r3
r9

r8

r7

r6

r4

r5

ri

C
K Each "guess" ri

"independently"
iterates the code:
Sleep timestepsri
so .t := t + ri
Move one unit in
the current
direction . 𝛼t

The guesses that are
close to a multiple of
the correct get highr
displacement and so
high amplitude.

Wrong guesses stay near 0
and so keep low amplitude.

The longer this runs, so
, the finer theQ ≈ M2

discrimination of the true .r

[For the curious, but officially FYI: extra details of Shor's and Grover's algorithms are on the
course webpage.]

A Final Look Back at Complexity

Shor's algorithm classifies FACTORING as belonging to . Another problem in that is strongly BQP NP

not believed to be complete (because of a sense in which it "almost" belongs to) is NP ∩ co - NP
Graph Isomorphism: the set of representations of pairs of graphs of the same number of G , G(1 2) n

nodes such that there is a function from the vertex set of onto the vertex set of such g V1 G1 V2 G2

that, for all , is an edge in if and only if is an edge in . Nor is this u, v ∈ V1 u, v() G1 g u , g v(() ()) G2

language, which is called GI for short, known to be in either. Since is closed downward BQP BQP

under , it follows that none of the NP-complete problems is known to belong to ---and here ≤
p
m BQP

there is a strong belief that they are not.

Here are three more facts that round out the known memberships of major languages and shapes of
complexity classes:

• For any reasonable space function , is closed under s n = 𝛺 n() (log) NSPACE s n[()]

complements. In particular, and . This theorem was proved NL = co - NL NLBA = co - NLBA
independently by Robert Szelepcsenyi and Neil Immerman in 1987-88.

• The set PRIMES was finally classified into deterministic polynomial time in 2002 by Manindra
Agrawal, Neeraj Kayal, and Nitin Saxena. We say that it was de-randomized from co- RP ∩ RP

into .P
• The graph-accessibility problem for undirected graphs , which is called UGAP , was de-G

randomized from randomized logspace to in 2004 by Omer Reingold.L

P

NP co-NP

𝜃 > 45∘

A

B

means A ≤ B
log
m

REG

∃q ∀q

FACT

PRIMES

SAT, G3C TAUT

BPP BP
P

RP co-RP

BQP

BQP BQP

L
NL GAP

CVP

UGAP

PSPACE

TQBF

EXP

RE

REC

co-RE

Known:
EXP ≠ P,
PSPACE ≠ NL
L ≠ REG

Complexity
Classes and
Important
Decision
Problems

∃ ∀Quantification
over objects of
unrestricted length

Quantification
over objects of
poly() lengthn

DK, ATM neither c.e. nor co-c.e.neither c.e. nor co-c.e.

GI

