
CSE491/596 Last lecture: Shor's Algorithm and Final Summation
 
Recall the Quantum Fourier Transform is just the Discrete Fourier Transform with exponential scaling:

Since this is a Hermitian matrix, the inverse QFT simply conjugates all the entries, which is the same as 
using  instead.  𝜔 = e-2𝜋i/N

 
Periodic Functions

 

 

 



The important example of a periodic function is modular exponentiation:
 

.f x  =  a  Ma( ) x mod
 
Here  is a number in  that is relatively prime to .  This means that  does not a 0, 1, … , M - 1{ } M a

share a prime divisor with .  When  is the product of two different primes  and , this simply M m = pq p q

means that  is not divisible by  or by .  If  and  did share a divisor , then  would always be a a p q a M p ax

multiple of , and  is also a multiple of  because  divides  too.  So you would not get all p a Mx mod p p M

of the possible values modulo .  When  is relatively prime to , what you always get is a number M a M

relatively prime to .  This is worth spelling out more than the text does:M
 
Definition: .G  =  1  ∪  a :  1 <  a <  M and a is relatively prime to MM { } { }

 
Theorem:  forms a group under multiplication.  GM

 
When  is a product of two primes, the size of  is exactly .  (The general name M = pq GM p - 1 q - 1( )( )

for the size of  is the totient function of , devised by and often named for the mathematician GM M

Leonhard Euler.)  The consequence of  being a group that we need is:GM

 
Corollary: For all  there is a positive integer  such that .  a ∈ GM r a ≡ 1 Mr mod
 
The least such  is exactly the period of  that we want to find.  It always divides , so when r f xa( ) |G |M

 we get that  divides .  You might think this should narrow down the possibilities, M = pq r p - 1 q - 1( )( )
but:
 

• We don't actually get the value  factored for us---we don't even know  m = p - 1 q - 1( )( ) m

because we don't know how to factor  to begin with.M =:  pq

• Compared to the number  of bits or digits of , which is the complexity parameter we care n M

about, the range of numbers less than  we might have to check is exponential in .m n

• By the way, the number  in  can be exponential in , so it looks like it takes too long to x ax n

compute  to begin with.  However, by iterated squaring modulo  we can compute the f xa( ) M

following values in  time: , , nO 2 a  =  a M1
2 mod a  =  a  M =  a M2

2
2 mod 4 mod

, , and so on up to a  =  a M =  a M3
2
2 mod 8 mod a  =  a M =  a M4

2
3 mod 16 mod

.  Then we need only multiply together those  such that a  =  a M =  a Mn-1
2
n-2 mod n-1 mod ai

 as a binary number includes .  This needs only  multiplications and mod-  reductions of x 2i 2n M

-bit numbers, so it is doable in   time using an  -time integer multiplication n nO 2 nO( )

algorithm.  (Or we can say  time using the simple multiplication algorithm.  The RSA O n3

cryptosystem uses modular exponentiation too---and this time is largely why your credit card 
needed a chip.) 

 

 

 



Nevertheless, if we do find the period ---for a "good" value  which we stand a fine chance of picking at r a

random from ---then it was known long before Peter Shor found his algorithm in 1993 that we can GM

go on to find  and  by classical efficient means.  p q
 
Theorem: There is a classical randomized algorithm that, when provided a function oracle 

 some integer multiple of the period of , finds a factor of  in expected g M, a  =( ) f Ma mod M

polynomial time.   That is, Factoring is in .  BPPg

 
The proof is the entire content of Chapter 12.  Lipton and I bundled this up into a separate chapter so 
that instructors would have the freedom to skip it, as we'll do now.  So we can focus on the task of 
finding  (or at least a multiple of ) via quantum means.r r
 
Shor's Theorem: Factoring is in .BQP

 
 
Steps of Shor's Algorithm
 

1. Given , use classical randomness to guess a number  between  and .M a 2 M - 1

2. Use Euclid's algorithm to find .  If it gives a number , then "ka-ching!"---we got a, Mgcd( ) c >  1

a divisor of .  Since both  and  are below , we can recursively factor both of them.M c M / c M / 2

3. If it gives , then we know . In the important  case, this had a, M = 1gcd( ) a ∈  GM M = pq

probability  and so was pretty likely anyway.  By the way, Euclid's algorithm also gives p-1 q-1

pq

( )( )

you a number  such that .  But it doesn't give you this  as a power of  (to wit, b ab = 1 Mmod b a

as ), which is what you'd need to get .  b = a Mr-1 mod r

4. To give some slack, we choose a number  and expand the domain of  to Q = 2  ≈  Mℓ 2 f xa( )

include  in the interval up to , not just up to .  The range is still  to . So our x Q - 1 M - 1 1 M - 1

domain is  in the range 0 to , which uses  bits.   This gives us quadratically many x 2 - 1ℓ ℓ ≈  2n
"ripples" of the period, which in turn helps the trigonometric analysis in the body of the proof.  

5. The quantum circuit begins with -many Hadamard gates, followed by a quantum q

implementation of the  classical gates needed to compute modular exponentiation.  This nO 1( )

produces the functionally superposed quantum state

.𝛷  =   f

1

N

∑
 

x∈ 0,1{ }ℓ

xf xa( )

6. Apply the QFT (or its inverse) to the first  qubits.  ℓ

7. Then measure the whole result.  Curiously, we ignore what happens in the " " portion of the f xa( )

circuit.  The fact that those final  qubits were entangled with the first  qubits is enough.  So we n ℓ

let our output  be the first  bits of the measured result over the binary standard basis.y ℓ
 
My own quantum circuit simulator draws an ASCII picture of the Shor circuit, here for  M = 21 = 3*7

(where I guessed ), which gave  since  is the next power of  after :a = 5 ℓ = 9 2 = 5129 2 M = 4412

 

 



 
But there isn't any more to the quantum circuitry than that.  It's all simply: compute a giant functional 
superposition and apply QFT (or its inverse) to it.
 
The analysis establishes that with pretty good probability already in one shot, the output  reveals the y

period  by a followup classical means.  And with initial good probability over the choice of , the r a

resulting value  unlocks the key to factoring .  We will focus on understanding why the measured  r M y

has much to do with the period  to begin with.  Then basic point---which has been known for centuries--r
-is that the Fourier transform converts periodic data to peaked data.  Here is how the simple quantum 
circuit above applies this fact.
 
 
The Intuition (See also Scott Aaronson, https://www.scottaaronson.com/blog/?p=208)
 
Let  stand for the true period of .  Let  be any element of the group  of size .  Then r f a GM p - 1 q - 1( )( )

we will picture  as a "crazy clock" that jumps  units counter-clockwise at each time step.  a a
 

 

 

https://www.scottaaronson.com/blog/?p=208


 
With fairly high probability, measurement yields a multiple of .  The true  is the least of the multiples.  r r

It is individually the most likely value returned and is also returned with reasonable probability.  A bad  r
might work anwyay.  We can tell whether  works by seeing if the classical part gives us  or , else we r p q
just try the quantum process again.  
 
The run of my simulator on  and  succeeded on the second try:M = 21 a = 5
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C
K Each "guess" ri

"independently"
iterates the code:
Sleep  timestepsri
so .t :=  t + ri
Move one unit in
the current 
direction .  𝛼t

The guesses that are
close to a multiple of
the correct  get highr
displacement and so
high amplitude.

Wrong guesses stay near 0
and so keep low amplitude.

The longer this runs, so
, the finer theQ ≈  M2

discrimination of the true .r



[For the curious, but officially FYI: extra details of Shor's and Grover's algorithms are on the 
course webpage.]
 
 
A Final Look Back at Complexity
 
Shor's algorithm classifies FACTORING as belonging to .  Another problem in  that is strongly BQP NP

not believed to be complete (because of a sense in which it "almost" belongs to ) is NP ∩  co - NP
Graph Isomorphism: the set of representations of pairs of graphs  of the same number  of G , G( 1 2) n

nodes such that there is a function  from the vertex set  of  onto the vertex set  of  such g V1 G1 V2 G2

that, for all ,  is an edge in  if and only if  is an edge in .   Nor is this u, v ∈ V1 u, v( ) G1 g u , g v( ( ) ( )) G2

language, which is called GI for short, known to be in  either.  Since  is closed downward BQP BQP

under , it follows that none of the NP-complete problems is known to belong to ---and here ≤
p
m BQP

there is a strong belief that they are not.  
 
Here are three more facts that round out the known memberships of major languages and shapes of 
complexity classes:
 

• For any reasonable space function ,  is closed under s n = 𝛺 n( ) (log ) NSPACE s n[ ( )]

complements.  In particular,  and .  This theorem was proved NL =  co - NL NLBA =  co - NLBA
independently by Robert Szelepcsenyi and Neil Immerman in 1987-88.

• The set PRIMES was finally classified into deterministic polynomial time in 2002 by Manindra 
Agrawal, Neeraj Kayal, and Nitin Saxena. We say that it was de-randomized from co-  RP ∩ RP

into .P
• The graph-accessibility problem for undirected graphs , which is called UGAP , was de-G

randomized from randomized logspace to  in 2004 by Omer Reingold.L
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Known: 
EXP ≠  P,
PSPACE ≠  NL
L ≠  REG

Complexity
Classes and
Important
Decision
Problems

∃ ∀Quantification 
over objects of 
unrestricted length

Quantification 
over objects of 
poly( ) lengthn

DK, ATM neither c.e. nor co-c.e.neither c.e. nor co-c.e.

GI




