Define $\Delta(p, c) = \{ r : N \text{ can process } c \text{ from } p \text{ to a state } q \text{ and then reach } r \text{ from } q \text{ by or more } b \text{-arcs}\}$.

$\Delta(1, a) = \{ 1, 2, 3 \}$
$\Delta(1, b) = \{ 3, 2 \}$
$\Delta(2, a) = \{ 2, 3 \}$
$\Delta(2, b) = \emptyset$
$\Delta(3, a) = \{ 1, 2, 3 \}$
$\Delta(3, b) = \{ 2, 3 \}$

$\Delta(p, c) = \bigcup_{r \in \Delta(p, c)} \delta^*(r)$
$\Delta(1, 2, 3, b) = \Delta(2, 3, b)$
$\Delta(1, 2, 3, b) = \{ 4, 5, 3, 3 \}$

A generalized NFA (G-NFA) is a 5-tuple $G = (Q, \Sigma, \delta, s, F)$ where now $\delta \subseteq Q \times \text{Regexp}(\Sigma) \times Q$.

$\delta(p, a, q)$, which includes $p \rightarrow a \rightarrow q$ as basic cases.

N is a NFA, $\gamma = 0 + b^*$.