
CSE491/596, Fall 2020 Problem Set 7 Due Fri. Dec. 11, 11:59pm
Plus topics for presentations on Dec. 10–11

Lectures and Reading: The remaining lectures will finish the coverage of quantum com-
puting, with emphasis on chapters 7–9 (and possibly 10) of the Lipton-Regan text. (Chapters
11–13 are covered in CSE696.) On the way there, section 4.5 (which furnishes some examples
for possible use in presentations), sections 5.1–5.3 (a case of the solved problem is another
presentation option), and sections 6.1–6.4 are the ones to focus on.

Assignment 7, written part due Fri. Dec. 11, 11:59pm

(1) (12 + 18 = 30 pts.)

Let us revisit problem (2b) on Prelim II. The first part shows how reducing from Exactly
One 3SAT shows the completeness of a more restrictive version of the problem. The second
part challenges you to get the same conclusion by a reduction from ordinary 3SAT. Recall
that a “star” in a (possibly directed) graph G to be a node u together with all nodes v such
that u has an edge to v. The target problem in both cases is:

Exact Star Cover

Instance: A directed graph G = (V,E).

Question: Is there a set of stars that includes every node in V exactly once?

(a) Explain why the answer-key solution also constitutes a mapping reduction from Ex-
actly One 3SAT to Exact Star Cover. You must give the correctness part for-
mally, using implications =⇒ . Prove in your answer why this works even though “k”
has been taken out of the problem altogether.

(b) Now observe that this doesn’t work as a reduction from 3SAT to Exact Star Cover
because solutions that satisfy two or three literals in a clause include the node for that
clause more than once. A similar problem was given (as makeup) last year and included
at the end of the regular key:

https://cse.buffalo.edu/˜regan/cse491596/CSE596F19ps4key.pdf

That problem was called “Perfect Dominating Set and included the k. Your ques-
tion is: does the same construction work for the Exact Star Cover problem stated
without k? Again, you must prove your answer with =⇒ logic if you say less, or sketch
a counterexample if you say no.

(2) (12 pts.)

Show that if TQBF belongs to NP then PSPACE = NP ∩ co-NP. [This is stated on page 2
of the notes for Nov. 16 but a few more facts than what is given need to be strung together
to make a proof.]

https://cse.buffalo.edu/~regan/cse491596/CSE596F19ps4key.pdf


(3) (18 pts. total)

Here is a version of the game “Chutes and Ladders” (also called “Snakes and Ladders”)
that you play by flipping a fair coin instead of rolling dice. The game board has cells 1, . . . , n
where you start on 1 and n is the goal. Each cell is connected to the next cell but may also
have a ladder going to a higher cell and/or a chute (or snake) going to a lower-numbered cell.

The rules with a coin are that if you are on cell m and get heads then you climb a ladder
if there is one, else you advance to cell m+ 1. If you get tails, then you must go down a chute
if there is one, else you go back to cell m− 1 (or stay at the start if m = 1). We will play the
game as solitaire, so the object is to tell how long you expect to need to play before you win.

First, suppose the game board is undirected in the sense that every chute from m to k is
accompanied by a ladder going from k to m. (An equivalent way of saying this is that the
game board has only ladders, but if you are at the top of a ladder and get tails, then you have
to go down it.) Show that the expected time to win is O(n2). A fact you can quote is that the
standard deviation of the binomial distribution counting heads from N coin flips is 0.5

√
N .

Give an example, however, of fiendish chutes-only game boards for which you can show
that the expected time to win is exponential in n.

[Footnote: To get the meaning of this, consider any undirected n-node graph G. If G has
a path that starts at some node s and goes through all the nodes ending at some node t, then
we can number the nodes in the graph 1 to n along that path. All other edges in the graph
become ladders. If G does not have such a path (called a Hamiltonian path—whether an
undirected graph has one is an NP-complete problem mentioned in Debray’s notes but that
lectures didn’t cover), it doesn’t matter much to the argument: Given any goal node t, let s
be some node furthest from t. Every node has at least one option that gets closer to t, and
that’s all you need to define the game for G. These rules are not quite the same as the way
a random walk in G is usually defined, but the effect is equivalent: the undirected version
UGAP of the GAP problem (is there a path from s to t? and if so, find one) belongs to
the logspace analogue SRL (symmetric random logspace, also called just SL) of RP. But in a
directed graph, the argument trying to do the original GAP problem in randomized logspace
fails.]

(4) (12 pts. total)

Lipton-Regan text, chapter 4, problems 4.10–4.12. (Note that they refer to problem 4.8,
which along with 4.9 is solved in the selected answers section.)

(5) (18 pts. total)

Consider the H-T-H circuit at the beginning of section 4.5 of the Lipton-Regan text (2nd.
ed. only). Add a second qubit line and consider inserting one more gate, a CNOT. There
are 4 possible ways to place it: before the first Hadamard, between the first Hadamard and
the T-gate, right after the T-gate, or at the end. Do all four preserve the property that on
input e00 (that is, input |00〉), the probability of measuring 0 on line 1 is irrational? Show two
relevant calculations using matrices by hand. (You can argue symmetry for the other two.
This makes 90 points on the written part.)



Presentation Options For 12/10–11, all teamable

Each presentation option involves choosing a moderately-sized quantum circuit and
demo’ing it on one of various quantum circuit applets that are freely available (some upon
registration). Show how to build the circuit in the applet (if you save it in advance, please
leave a few gate-insertion steps to do by hand), describe what it is intended to do, and show
its behavior on a few relevant states.

This session is intended to be more about participation than presentation and to involve
playing around with the circuits by adding, removing, or changing some gates. So please come
prepared not only to give a riff or two on your example but also on the others. You don’t
need to know how to operate all the possible applets to give suggestions, just your own. Here
are some applets:

1. Davy Wybiral’s Quantum Circuit Simulator: https://wybiral.github.io/quantum/ (gen-
eral page https://wybiral.github.io/) Most lightweight and user-friendly, IMHO, but
somewhat limited.

2. Quirk: https://algassert.com/quirk, by Craig Gidney, a co-author of Google’s 2019
quantum-supremacy paper. (He has lots of stuff at https://algassert.com/about.html
too.)

3. The IBM Quantum Experience: https://quantum-computing.ibm.com/. Allows you
to actually execute small circuits on a remote quantum machine. See also Qiskit
(https://qiskit.org/textbook/ch-algorithms/defining-quantum-circuits.html)

4. Quantum Programming Studio: https://quantum-circuit.com/home Also has links to
hardware-run options.

5. Q.js: https://quantumjavascript.app/ Seems the most limited.

There is an enormous list of simulators at https://www.quantiki.org/wiki/list-qc-simulators
Now here is a list of possible circuits to demo. The last two are more open-ended. Other ideas
of similar size can be cleared with me:

(a) Various graph-state circuits as described (briefly) in section 4.5 of the Lipton-Regan
text (2nd ed. only). Build one(s) of 5 and 6 vertices/qubits too, such as the prism
graph in section 3.6. One thing to look for is whether 0n is given as a possible
output when 0n is the input. The significance of this is discussed in my article
https://rjlipton.wordpress.com/2019/06/10/net-zero-graphs/ with my recent PhD grad-
uate Chaowen Guan.

(b) The circuit for the Toffoli gate on the next page in section 4.5.

(c) The circuit to build the 4-qubit quantum Fourier transform from smaller pieces in the
answer section of chapter 5. (Or work out the smaller 3-qubit version, which would be
quite enough.)

https://wybiral.github.io/quantum/
https://wybiral.github.io/
https://algassert.com/quirk
https://algassert.com/about.html
https://quantum-computing.ibm.com/
https://qiskit.org/textbook/ch-algorithms/defining-quantum-circuits.html
https://quantum-circuit.com/home
https://quantumjavascript.app/
https://www.quantiki.org/wiki/list-qc-simulators
https://rjlipton.wordpress.com/2019/06/10/net-zero-graphs/


(d) The circuit for quantum teleportation in section 8.3 of the text—where you can prepare
an interesting single-qubit c by doing HTH, for instance.

(e) Some 3-qubit cases of the Deutsch-Jozsa algorithm in chapter 9, where you drop in gates
for at least three examples of a binary function f .

(f) Some illustrations using 3 + 1 = 4 or 3 + 2 = 5 qubits of the copy-uncompute trick
in section 6.3. Use at least one gate A with both a real and a complex number entry,
such as S or T, so that its adjoint A∗ is really different. The idea is to show that when
the 1 or 2 intended outputs on the first 3 lines are basis values, then they get copied,
but if they are still in superposition, “YMMV”—so this doesn’t violate the no-cloning
theorem. Using more qubits and complex gates might give an example that is more
visually convincing than the one in the text.


