
CSE491/596 Course Information Fall 2020

Instructor

Dr. Kenneth W. Regan, 326 Davis Hall, 645-4738, regan@buffalo.edu;

Office hours: Still TBA.

Lectures

(LEC) MWF 3:00pm–3:50pm in Knox 20

Reading—notes to be given in class, no textbook purchase

1. Notes by Arun Debray for Stanford’s undergraduate course as taught by Ryan Williams
(who is now at MIT). They are based on the textbook by Sipser listed below (which
is used even for graduate classes at MIT) but Williams’s priorities match my own very
closely.

2. Chapters 27 and 28 of the CRC Handbook on Algorithms and Theory of Computing ,
co-authored by me with Professors Eric W. Allender and Michael C. Loui. These are
for the second half of the course and will be given out in class.

3. Excerpts from my textbook with Richard Lipton, Quantum Algorithms Via Linear Al-
gebra. These will also be given out.

4. The weblog “Gödel’s Lost Letter and P=NP” may be used for assigned readings.

Optional Alternate Sources

1. Steven Homer and Alan Selman, Computability and Complexity Theory. The previous
textbook.

2. M. Sipser, Introduction to the Theory of Computation, 3rd. ed., Thompson SW Interna-
tional, 2012. The popular text used in the undergraduate course, CSE396.

3. J. Hopcroft and J. Ullman, Introduction to Languages, Automata Theory, and Compu-
tation, Addison-Wesley, 1979. The classic text. This course will mostly parallel the
material in chapters 7–13 of this text; all assumed background and much more is in
chapters 1–6.

4. H. Lewis and C. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall,
1981. Has more examples and illustrations and neat little tidbits than Hopcroft-Ullman,
but some messier notation.

5. N. Cutland, Computability , Cambridge University Press, 1980. A short-but-
comprehensive and crystal-clear treatment of computability theory, the main topic of
the first part of the course.



Examinations:

• Two prelim exams held in class period.
• One cumulative 3-hr. final.

Organization:

A novel feature this year is the introduction of a class-participation component in the
manner of British-system tutorials. This was in fact the original purpose of “recitations” at
UB and was practiced by several departmental colleagues when I arrived 30 years ago and our
enrollment was smaller. The expectation will be for each student in groups of 2 or 3 to present
a designated part of a bi-weekly assignment, mixed in with saying how the answer or method
would change when aspects of the problem change and general participation in discussions
about the material. These required meetings will alternate weekly with optional homework
review sessions.

The course will be graded on a total-points system. Letter grades will also be given for
individual exams and possibly some assignments, as a help in telling where you stand, but
only point totals will have official significance. The weighting of grades in this course shall be:

Homework: 40%
Tutorial: 15%
Prelims: 18%
Final: 27%

I reserve the right to 5% leeway in weighting while assigning the final letter grade. This is most
typically done for students who do markedly well on the final exam, when it may be treated
as if it were worth 32% for that student. This will only be done to an individual student’s
advantage, and will have no effect on others’ grades. The assignments, examinations, and
grading rubric will be the same for both sections. See notes on course material and philosophy
below—which is partly designed to allow for differential background between undergrad and
grad and also for those within both sections having had or not-had coverage of automata and
formal languages in previous courses.

The first prelim exam is tentatively set for Fri. Oct. 16 in class period. Arrangements
for those who are remote in different time zones will be worked out individually.

The homework will consist of bi-weekly problem sets. All submissions will be via CSE
Autograder in the form of PDF files. The first assignment will be given on Fri. Sept. 11.
The logistics of exam submission will be similar to that of homeworks but in a timed period.
As also discussed, I am legislating a feature that was approved after a week-13 weather event
upended schedules in 2018 and again in 2019: an optional extra homework to compensate for
a mishap on the final exam.

Problem set submissions must be your own individual work . No joint submis-
sions will be accepted. In an early lecture I will explain the purpose of indi-
vidual work, academic integrity, and the “qualitative” nature of exercises in this
course. I will give guidelines on how work can be done and what can be dis-
cussed among you. Any cheating will be punished per the department policy at
https://engineering.buffalo.edu/computer-science-engineering/information-for-students/policies/academic-integrity.html



Course Coverage and Approximate Calendar (“the” syllabus)

The plan is to cover finite automata and (non-)regular languages in the first three weeks
(plus a day), then computability and undecidability through mid-term. The second half will
feature computational complexity (using my chapters with Allender and Loui and Debray’s
notes as parallel texts): time and space complexity defined, why we emphasize P and NP, NP-
hardness and completeness, other salient complexity classes and the (known and unknown)
relationships among them. Basics of randomized algorithms and quantum computing will
round out the coverage. Homeworks or Piazza posts will give indication from week to week of
exactly what to read. I cannot spell out a timetable in greater detail now because my lectures
will adjust to the needs of the class. I welcome feedback to me personally .

The material is chosen as a blend of undergraduate and graduate content. Here are five
“logical units” of a “CS theory” course (apart from Algorithms):

1. Regular languages and finite automata;

2. Context-free grammars and pushdown automata (grad extension: other grammars);

3. Computability and undecidability (grad extension: logic and recursion theory);

4. Computational complexity (can branch into information complexity and much else);

5. Quantum computing.

The old CSE496/596 had the first three. In the 1990s we found that almoat all graduate
students had the first two areas, so the stand-alone CSE596 modernized with complexity in
their place, while CSE396 kept the first three with a brief introduction to P and NP (often
CSE331 has covered NP-complete problems in more detail). Now the first is delegated to
CSE191 and the second is attended to by coverage of BNF grammars in CSE305 and/or
coverage of compilers in other courses. The present design for CSE491/596 skips grammars
but includes everything else, with complexity expressly at graduate level.

The classic textbook by Sipser actually has this nature: it is labeled for both undergrad
and grad even at MIT and usually the former does chapters 1–5 and 7 while grad emphasizes
chapters 6–9. The course notes by Arun Debray are from a Stanford undergraduate course
that used Sipser but accentuated what we here regard as graduate content. The quantum
material is from a textbook (mine with Richard J. Lipton) that also targets both upperclass
undergraduate and graduate courses, and has been used for undergrad here (by Prof. Knepley,
not yet myself). Thus by philosophy the course is blended.

For outcomes and assessment objectives, the course includes ABET CSE undergraduate
criterion (6): apply computer science theory and software development fundamentals to pro-
duce computing-based solutions. The particular indicator is to apply computer science theory
in the modeling and design of computer-based systems in a way that demonstrates comprehen-
sion of the tradeoffs involved in design choices. The first example of such a tradeoff and design
choice will come in the discussion of using the spirit but not the letter of the NFA-to-DFA
construction when matching strings to regular expressions. The presence of tradeoffs among
time, space, and other resources (in fact or conjecture) is a backbone of complexity theory.
This also blends with the philosophy of emphasizing the algorithmic content of proofs. Many
homework exercises and examination questions will embody such design choices and assess
the understanding of them.


