
CSE596, Fall 2019 Problem Set 2 Due Wed. Oct. 2

Lectures and Reading. This week is moving on to Turing machines. The attention in early
lectures will be on “gritty” character-level detail, but the purpose by next week will be
to move away from it. The essence is conveyed in the diagram https://cse.buffalo.edu/ re-
gan/cse396/UTMRAMsimulator.pdf of how a TM can simulate a random-access machine
(RAM), really a miniature but serviceable assembly language. (This was copied on the
back of the next set of notes given out on 9/18.) Since the assembly language could be a
“virtual” compilation target for any (known) high-level lnguage (HLL), this establishes the
equivalence of TMs and HLLs, which is major evidence for the Church-Turing thesis (CTT).

In fact, t steps of the RAM can be simulated by O(t4) steps of the TM. Steven Cook—in
a less-famous theorem he proved in 1970-71—improved this to Õ(t3) by a caching strategy
roughly similar to how C++ vector amortizes space by doubling the size when needed.
Under “fair-cost” RAM time, which counts one time unit per bit of the operands in a step
rather than “unit cost” which just counts steps—Cook showed Õ(t2). The target TM in all
cases has 3 or 4 tapes, and there is a further O(t2) overhead for getting that down to one
tape (as will be sketched in class, Theorem 7.6 on page 22 of the notes). So going from time
as reckoned in an algorithms course to a single-tape TM could multiply the exponent by 8,
but that’s OK in this sense: a polynomial running time nO(1) remains nO(1). Thus TMs and
HLLs are equivalent up to polynomial time. This led to a polynomial-time CTT, which is
challenged by quantum computers.

For our purposes now, CTT says that the notions of decidability and undecidability
defined formally via Turing machines are general and robust concepts. Next week will define
computational decision problems (per section 8 of Debray’s notes) and discuss decidable
and undecidable problems. Instead of making ATM or its complement the first undecidable
problem, lecture will introduce the “Diagonal Language”

DTM = {x : x is the code of a TM that does not accept x}.

The idea of this language is handled in the proof of Theorem 8.5 by making “D” a hy-
pothetical machine, but it is much better IMHO to minimize hypothetical quantities and
focus instead on the concrete definition of a language. By showing that DTM is not even
computably enumerable (that is, not the language accepted—let alone decided—by any
TM), we will show that ATM is undecidable. Then we will use mapping reductions to show
more undecidable problems—so for a week from now, please start section 9 in the new set
of notes.

(1) Prove that two of the following three languages are non-regular, via a Myhill-
Nerode argument. For the regular one, give a regular expression. Here #a(x) denotes the
number of occurrences of the character a in the string x, and more generally, #w(x) denotes
the number of occurrences of the substring w in x. For example, #0010(00100100) = 2 even
though the two occurrences of the substring 0010 overlap each other. Also, for two strings
x, y of the same length, x⊕ y denotes the bitwise exclusive-OR, e.g. 1011⊕ 0010 = 1001. All
three languages are over the alphabet Σ = {0, 1}.

(i) L1 = {x : #0(x) ≤ #1(x)}.

https://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdf
https://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdf

(ii) L2 = {x : #01(x) = #10(x)}.

(iii) L3 = {xy : |x| = |y| ∧ x ⊕ y = 1|x|}.

(3 × 12 = 36 pts.)

(2) Now consider L4 = {x : #010(x) = 0 ∧ #101(x) = 0}. Use the Myhill-Nerode
technique to show that any DFA M such that L(M) = L4 requires at least 6 states. Then
design such a DFA M—ideally showing how your proof guided you to it (or vice-versa).
Finally explain why you can basically “collapse” M into a generalized NFA with only 2
states s, f such that

L(M) = Ls,s ∪ Ls, f ∪ L f ,s ∪ L f , f ,

and use that to give a regular expression for L4. (12 + 6 + 9 = 27 pts.)

(3) Design a two-tape deterministic Turing machine M2 that recognizes the language

L3 = {x#0k#y : x, y ∈ {0, 1}∗, x = y ∧ |x| = k}.

Here Σ = {0, 1, #} but the # character is only allowed as a marker to divide the input string
w into thirds. Your M2 should run in O(n) time where n = |w|; note that any accepted string
gives n = 3k + 2 with k as above. A well-commented arc-node drawing is fine; if you use
the Turing Kit, please take a screenshot since its own Postscript-based print feature is old
and may be wonky.)

Then argue as best you can that every single-tape TM M1 such that L(M1) = L3

requires Ω(n2) time. Since n is linear in k, it may help to think of this as Ω(k2) time.
Start by showing that S = {0, 1}k is PD fopr L3. Then argue that this means k bots of
information must somehow cross the middle 0k part in order to decide y = x correctly.
Finally reckon how much total time M1 must spend in that middle region, noting that
M has a fixed number r = |Q| of states but k can grow. (You may consult last year’s key
https://cse.buffalo.edu/ regan/cse596/F18/CSE596ps3key.pdf for a related problem where the
one-tape time is Ω(n log n), but your answer does not have to use the Australian imagery.
18 + 18 = 36 pts.)

(4) Show that the concatenation of any two decidable languages is decidable, and
that the concatenation of any two c.e. languages is c.e. Argue further that if A is c.e., then
so it A∗. (There is an analogous fact when A is decidable, but we will revisit it when doing
complexity theory. 9+6+6 = 21 pts., for 120 pts. on the set)

https://cse.buffalo.edu/~regan/cse596/F18/CSE596ps3key.pdf

