
Oracle Turing Machines and the Arithmetical Hierarchy

Dr. K.W. Regan, Spring 1994 class notes, adapted for CSE596, Fall 2008

Abstract

These notes supplement Section 3.9 of the Homer-Selman text with more material on
reductions among problems, and on several concepts that are also useful in complexity
theory.

1. Oracle Machines and Turing Reductions

An oracle Turing machine M = (Q,Σ,Γ, δ,∆, s, F,O) is defined just like a normal Turing machine,
except that O ⊆ Q is a special collection of oracle query states. The actions of M in a query state
are controlled not by the character read on the tape, but by an “external module” which consists
of a language A called the oracle set. The oracle A can be any given language of strings over some
alphabet Λ ⊆ Γ. (Usually we have Λ = Σ, and usually Σ = { 0, 1 }.) We’ll assume that all OTMs
discussed here are deterministic. The purpose of oracle TMs is to provide a formal model with
which to study questions of the form, “If I could solve X, what else could I do?”

To specify how this works in an intuitive manner, let us suppose that M uses the tape delimiters
∧ and $, and that Γ also contains the characters ‘?’, ‘0’ (for ‘no’), and ‘1’ (for ‘yes’). (Note: ∧, $, ?
are not in Λ.) Every arc into a query state q? ∈ O has the form (p, c, ?, S, q?), while there are
exactly two arcs out of the query state, one on ‘0’ and one on ‘1’. When M enters state q?, the
query string z is identified just like in the “relaxed output convention”: z is the longest consecutive
string of characters over Λ beginning in the cell to the right of the ∧ marker. If z belongs to the
oracle set A, then the oracle module “magically” overwrites the ‘?’ by a ‘1’, and the arc on ‘1’ is
taken. If z /∈ A, then the oracle responds ‘0’, and the ‘0’ arc is taken. After that, computation
proceeds as normal, up until another query state is entered.

Definition 1.1. A language A Turing-reduces to a language B, written A ≤T B, if there is an
oracle Turing machine M such that M is total with oracle B, and L(MB) = A.

This is like the definition of A being recursive, except for the presence of the oracle set B. It
is also customary to say that A is recursive in B. In our present example, the Halting Problem
is recursive in the emptiness problem for 2HDFAs; i.e., HP ≤T 2HDFA-∅. Turing did indeed
invent the idea of an oracle TM and a Turing reduction. In this particular case, M0 only needs
one (1) oracle call and follows a pre-set truth-table of what to say when the oracle responds: here,
0 7→ Accept and 1 7→ Reject, and so we can be more specific and write HP ≤1tt X.

In fact, the only examples I know of languages B,A such that B ≤T A but not in one oracle
call are too technical to give here. Consider B := “HP twice” := { code(M1)code(M2)x1#x2 :
M1(x1) ↓ ∧M2(x2) ↓ }. You might think this requires two calls to an oracle X such as X = K to
solve, but you can do it in one call by first combining M1 and M2 into a machine M3 that halts iff
both of them do, and then asking a single question relevant to M3.

1

Now suppose that we replace an oracle language X by its complement X̃. Then we could
switch the wires at the query state to change M0 to an OTM M̃0 whose responses to the oracle
are 1 7→ Accept and 0 7→ Reject. That is, M̃0 behaves like “Simon the oracle says: accept w iff
zw ∈ X̃.” Then we can be even more specific and write HP ≤m X̃. This is read, “HP many-one
reduces to X̃.” (The ‘many’ allows for the possibility that many different input strings w might
lead to the same one query string zw, but usually in practice zw uniquely depends on w, and so
we could actually speak of a one-one reduction, written HP ≤1 X̃. But “many-one” carries the
specifics far enough for my purposes.) In lecture you will have seen the equivalent definition:

Definition 1.2. A language A many-one reduces to a language B, written A ≤m B, if there exists
a total recursive function f such that for all strings w, w ∈ A ⇐⇒ f(w) ∈ B.

2. Relativized Language Classes

Now we can adapt the notation used for the classes of recursive and r.e. languages to the case of
oracle machines. For any oracle set A:

(a) REA := {L : there is an OTM M such that L(MA) = L}.

(b) RECA := {L : there is an M such that L(MA) = L and MA is total}.

(c) co-REA := {complements of languages in REA}.

Many theorems about the classes REC and RE go through untouched by the presence of a given
oracle set A. That is to say, they relativize. Some examples:

Theorem 2.1. For any oracle set A, RECA is closed under complements.

Proof. Given L ∈ RECA, this means there is an OTM M0 such that M0 is total with oracle set
A and L(MA

0) = L. Presuming that M0 has been put into the normal form which makes M0

“crash-free” and gives M0 distinguished accept and reject states qacc and qrej, let M1 be obtained

from M0 by interchanging qacc and qrej. Since M0
A is total, MA

1 is total. And L(MA
1) = L̃ (the

complement of L). So L̃ ∈ RECA too.

Theorem 2.2. For any oracle set A, REA ∩ co-REA = RECA.

Proof. First suppose L ∈ RECA. Then clearly L ∈ REA. By Theorem 2.1, L̃ ∈ RECA, so
L̃ ∈ REA too. If L̃ ∈ REA, then by definition L ∈ co-REA. So L ∈ REA ∩ co-REA.

Going the other way, let L ∈ REA∩ co-REA. Then there are oracle TMs M1 and M2 such that
L(MA

1) = L and L(MA
2) = L. Thus on any input x, exactly one of M1 and M2 has an accepting

computation on input x. Build an OTM M3 which on any input x makes two copies of x, simulates
one step of M1 on the first copy, one step of M2 on the other copy, then back for one more step of M1

on the first copy, and so on. (The copies can be marked off with separate delimiters ∧1, $1,∧2, $2;
and if $1 ever runs up against ∧2, call the “make-more room” procedure from class.) If the step
of M1 or M2 enters a query state of M1 or M2, then M3 has the same query state, and the oracle
response works the same. MA

3 is total because exactly one of MA
1 and MA

2 will stop and accept; if
it is M1, then M3 accepts, and if it is M2 that accepts, then M3 rejects. (If either M1 or M2 rejects
ahead of time, M3 takes the appropriate action.) Since L = L(MA

3), L ∈ RECA.

2

This proof too is really just like the one given in lecture for the non-oracle case. Now for two results
which say when you can do away with the oracle, and when you can’t:

Theorem 2.3. If A ∈ REC, then REA = RE and RECA = REC.

Proof. Given that A is recursive, there is a total non-oracle TM MA accepting A. Let M0 be an
oracle TM which accepts L with oracle A. Then instead of making q? in M0 a query state, run an
arc (q?, ?,∧, R, sA) to the start state sA of MA, wire the arcs

{ (fA,∧, 1, S, q?), (fA, otherwise, same, L, fA) }

to the accept state fA of MA (this moves left until it finds the new ∧ and changes it to a ‘1’), and
do likewise for the reject state rA of MA and ‘0’. This changes M0 to a non-oracle TM M1 which
still accepts L (since the “subroutine” MA always terminates), and M1 is total if MA

0 is total. Thus
the conclusions about L follow.

Theorem 2.4. It is not the case that for all B ∈ RE, REB = RE.

Proof. This time, let us take B to be the language of the Acceptance Problem; namely, AP :=
{ code(M)x : M accepts x }. Define AP(B) := { code(M)x : x ∈ L(MB) }. Then AP(B) ∈ REB.
Now the proof that AP /∈ REC from class is not affected at all by the presence or absence of the
oracle set B. To wit: If AP(B) ∈ RECB, then the complement ÃP(B) of AP(B) is in RECB, by
Theorem 2.1. Hence the language D(B) := {code(M) : M is an OTM such that with oracle B,
MB does not accept code(M)} also belongs to RECB. That means there is a TM M1 such that
L(MB

1) = D(B). What does M1 with oracle B do on input x := code(M1), pray tell? If it accepts,
then code(M1) ∈ D(B) [by L(MB

1) = D(B)], but by definition of x ∈ D(B), MB
1 does not accept

code(M1). And if MB
1 does not accept x = code(M1), then x ∈ D(B), so it should have accepted.

Either way there’s a contradiction. Thus we conclude: AP(B) /∈ RECA.
Now the key observation is that RE is contained in RECB—because for any r.e. language L,

you can take a fixed TM ML accepting L, and given any instance x of the decision problem for L,
convert it to the oracle query code(M)x for B (= AP), which gives the answer you want. So from
above, we have AP(B) /∈ RE. Hence AP(B) itself is a language which shows that for B := AP ,
REB 6= RE.

For some final notation, given any class C of languages, define

REC := {L(MA) : A ∈ C }, and RECC := {L(MA) : A ∈ C and MA is total }.

Theorem 2.3 showed that REREC = RE. Then we can inductively define the classes∑0
0 := REC,

∑0
1 := RE, and for k ≥ 1,

∑0
k := RE(

∑0
k−1).

Also define
∏0
k := co-

∑0
k for each k; thus

∏0
0 = REC and

∏0
1 = co-RE. We could also write e.g.∑0

2 as RERE,
∑0

3 as RE(
∑0

2), and so on. Further notation is: ∆0
0 = ∆0

1 = REC, and for k ≥ 2,
∆0
k = REC(

∑0
k−1). These classes taken together form the so-called arithmetical hierarchy . The

‘0’ on top stands for “type-0 arithmetic.” The continuation of this handout will explain what this
means, and where the name “Arithmetical Hierarchy” came from.

3

3. Predicates

Let Σ := { 0, 1 }, and let us identify strings in Σ∗ with natural numbers in dyadic notation. Let
Σ′ := Σ ∪ {# }, where # is a new separator symbol . If we want to be purists, we can re-code Σ′

back over Σ∗ by mapping 0 → 00, 1 → 11, #→ 01. Later on we will be purists!
Call an m-place predicate R(·, ·, . . . , ·) decidable if the language LR := {w1#w2# . . .#wm :

each wi is in Σ∗ and R(w1, . . . , wm) holds} is recursive. As a matter of convention, we will allow
variables to refer only to strings in Σ∗. Here are three important examples of decidable predicates:

(I) The Kleene T -predicate: T (code(M), x,~c) ≡ ~c is a valid halting computation of the TM M
on input x.

(II) The Kleene U -predicate: U(~c , z) ≡ ~c is the code of a valid halting computation, and z is the
output of ~c according to the “relaxed” output convention.

(III) The acceptance predicate: Acc(code(M), x,~c) ≡ M is an acceptor and ~c is a valid accepting
computation of M on input x.

Technotes: It’s getting tiring to write code(M) all the time. So let’s write T (v, x,~c) for the assertion
that Mv on input x has the valid halting computation ~c . If a string v ∈ Σ∗ is not the code of a
TM, then let’s consider Mv to be a TM which has no halting computations at all. After identifying
strings v with natural numbers i, we’ll soon take up the habit of writing Mi and T (i, x,~c). Stephen
Kleene actually wrote U as a function of ~c and wrote the predicate as ‘U(~c) = z.′ The symbol U
might cause confusion with the universal Turing machine; I didn’t want to change it. If we identify
acceptors with transducers that compute characteristic functions, then we could define Acc(v, x,~c)
as T (v, x,~c)&U(~c , 1), or more intuitively, as “T (v, x,~c) ∧ U(~c) = Accept.”

Note that these predicates are not only decidable, they are “easy” in that they can be verified
by a two-head DFA. Historically, the role of “easy” was applied to the so-called primitive recursive
functions and languages, but from the modern point of view of complexity theory, there are primitive
recursive languages which are really hard to decide. Every 2HDFA language, however, requires at
most 2n steps on inputs of length n, and this is pretty easy. The only fact you need to know
about 2HDFAs is that a 2HDFA can decide whether a sequence of IDs I0#I1# . . .#It represents
a valid halting computation by a single-tape Turing machine M , by starting with one head in I0

and the other in I1 checking that any difference follows by a valid move of M , and carrying on
with the heads straight across to It. The language of valid halting computations by M is called
VALCOMPS (M), and when M is a universal TM, just VALCOMPS . The following fact tells us
that we will be able to base our theory on “easy” predicates.

Proposition 3.1. Suppose R(x, y) is a decidable predicate. Then we can find 2HDFA-computable
predicates R1(x, z) and R2(x, z) such that for all fixed x ∈ Σ∗ :

(a) (∃y R(x, y)) ⇐⇒ (∃z R1(x, z))

(b) (∀y R(x, y)) ⇐⇒ (∀z R2(x, z)).

Proof. Let r be the code of a total TM which accepts LR. We may presume that Mr is determin-
istic. Then for all x ∈ Σ∗ :

(a) (∃y R(x, y)) ⇐⇒ (∃y)(∃~c) Acc(r, x#y,~c), and

(b) (∀y R(x, y)) ⇐⇒ (∀y)(∀~c)[Acc(r, x#y,~c) ∨ ¬T (r, x#y,~c)].

4

To see that the equivalence in (b) holds, read the right-hand side as saying “for all y, the only
halting computations of Mr on input x#y are accepting.” Since Mr is total, Mr always has a
halting computation on any input x#y, so this is equivalent to “for all y, Mr accepts x#y#,′′

which in turn is equivalent to the left-hand side. To build a 2HDFA which decides the part in [. . .],
take S from the lecture on VALCOMPS and 2HDFA’s, but re-program S to accept iff its input is
not the code of a rejecting computation.

You may have one quibble: the right-hand sides are supposed to have single quantifiers ‘(∃z)′
and ‘(∀z)′, not the double quantifiers over y and ~c . However, two adjacent like quantifiers can
always be coalesced into one. Formally, I do this via the following tupling function, defined for all
finite sequences x1, x2, . . . , xk of strings in { 0, 1 }∗ by:

〈x1, x2, . . . , xk〉 =def double(x1)01double(x2)01 . . . 01double(xk),

where double is defined recursively by double(ε) = ε, double(0x) = 00double(x), and double(1x) =
11double(x). For example, 〈101, 01, ε, 00〉 = 11001101001101010000. What this really does is map
the earlier alphabet { 0, 1,# } back onto strings over { 0, 1 }, and for most purposes we can use the
notations x#y and 〈x, y〉 interchangeably. The only reason for the change now is that earlier we
said quantifiers would only range over strings in { 0, 1 }∗. Now the right-hand side of (a) can be
replaced by:

(∃z) [(∃y,~c)z = 〈y,~c 〉 ∧ Acc(r, x#y,~c)] .

The point is that now there is a 2HDFA S′ which, given input x#z (or 〈x, z〉), can decide the
statement inside the [. . .] (since r is fixed). Note that the quantifiers on y and ~c inside the [. . .]
are really “bounded” in their scope by z once z is given by the outside quantifier. Indeed, y and
~c can be read off from any “good” z, and if we introduced notation analogous to car and cdr in
LISP, we could write instead:

(∃z) [Acc(r, x#car(z), cdr(z))] .

But then we’d have to worry about issues such as: what if z is not in the range of the tupling
function on two strings? Also, the form with y and ~c is more intuitive to read. Happily, all of these
problems can be taken care of by a 2HDFA—I’ll leave you to imagine how to modify the one from
class for the Acc predicate so that it also checks that z has the right form. 1

This ability to “coalsce” two like quantifiers into one is often taken for granted. What makes a
predicate complicated isn’t so much the number of variables or quantifiers as the number of alter-
nations between “there exists” and “for all” in its statement. Ground level is when the predicate is
decidable, and as the above shows, one can then re-write the predicate with one quantifier, indeed
one with bounded scope. A decidable predicate is also known as a

∑
0-predicate, a

∏
0-predicate,

and most preferably, as a ∆0-predicate. The following inductive definition formalizes the alternation
of quantifiers.

Definition 3.1. Let k ≥ 1. A predicate P (. . .) is a
∑
k-predicate if P (. . .) has the form (∃zkQ(. . .))

where Q(. . .) is a
∏
k−1-predicate. P (. . .) is a

∏
k-predicate if P (. . .) has the form (∀zkQ(. . .)) where

Q(. . .) is a
∑
k−1-predicate.

1Put another way, we can cope with the fact that the tupling function is not onto; e.g., 001011 is not
in the range. The challenge to make a pairing function be onto and still be computable by a finite-state
machine led to my paper on that subject.

5

For example, the predicate (∀x)(∃~c)T (i, x,~c) is a
∏

2-predicate and expresses that the TM
Mi is total. The predicate (∀x)(∀~c)¬T (i, x,~c), which expresses that Mi has empty domain, only
counts as a

∏
1-predicate because the two universal quantifiers can be “lumped together.”

Definition 3.1 only allows formal predicates P in which all quantifiers are out in front. Such a
predicate is said to be in prenex normal form. The advantage of prenex normal form is that it is
easy to see which variables are bound ; i.e., in the scope of a quantifier on that variable, and which
are free.

There are conventions in writing predicates which are confusing and take getting used to. Vari-
ables such as x and y1, y2, . . . , yk are really formal symbols, but they also stand for the strings or
numbers used to “fill them in.” When we write P (x, y1, y2, . . . , yk), the formal variables are consid-
ered to be listed in a certain order inside P already. The ‘(x, y1, y2, . . . , yk)′ is not formally part of
the predicate—it is only a reminder telling the reader all or some of the variables in the predicate.
One can use this device to instantiate some or all of the arguments; e.g., ‘P (0110, y1, . . . , yk−1, 101).’
It is helpful to think of a predicate P as a procedure that returns values of type BOOLEAN, where
the free variables of P are those listed as arguments in the procedure header, and the bound vari-
ables are those declared locally in the next line of P . Thus the standard convention in writing a
predicate P is to list after P exactly those variables which are free in P . For instance, by quantifying
on the decidable predicate Acc(i, x,~c) we can define the

∑
1-predicate

Accs(i, x) := (∃~c) Acc(i, x,~c).

Then the predicate AccAll(i) := (∀x) Accs(i, x)

is obtained by universal quantification on the
∑

1-predicate Accs(i, x), so by Definition 3.1 it is a∏
2-predicate. Unrolling it all the way down to a decidable base predicate gives,

AccAll(i)↔ (∀x)(∃~c) Acc(i, x, c),

where ‘↔’ stands for “is syntactically equivalent to.” Here we can see the “for all. . . , there ex-
ists. . . [decidable]” form which characterizes

∏
2-predicates. On the other hand, it is also conven-

tional to refer to a predicate P without listing any variables at all, since they are all declared in
the header and body of P anyway. with all this in mind, the following is really the same as the
definition of ‘LR’ at the beginning of this section:

Definition 3.2. Let R be a predicate with free variables x1, . . . , xm. Then R is said to represent
the language LR := {w1# · · ·#wm : each wi is in Σ∗ and R(w1, . . . , wm) holds}.

4. The Arithmetical Hierarchy Theorems

The following is called the “quantifier definition of the arithmetical hierarchy”:

Definition 4.1. Let k ≥ 0. Then a language L ⊆ Σ′∗ is a
∑
k-language if there is a

∑
k-predicate

R such that L = LR. L is a
∏
k-language if there is a

∏
k-predicate S such that L = LS . L is a

∆k-language if it is both a
∑
k-language and a

∏
k-language.

By Proposition 3.1 it follows that as long as k ≥ 1, for any
∑
k-language L, we can in fact find

a
∑
k-predicate R such that R represents L and the part of R in [. . .] is decidable by a 2HDFA.

To see this, just find the last ‘∃′ or ‘∀′ quantifier block in the predicate R (it will be ‘∃′ if k is even
and ‘∀′ if k is odd), and apply the construction in Proposition 3.1 to what follows. A similar fact

6

holds for
∏
k-languages L and

∏
k-predicates S whose “base” is decidable by a 2HDFA. Historically,

using numbers in place of strings, it was observed that the part in [. . .], in addition to being
primitive recursive, can also be written as an arithmetical formula; i.e., a logical formula involving
arithmetic expressions. Examples of arithmetical formulas are Divides(m,n) := (∃r)(n = mr) and
Prime(n) := n > 1 ∧ (∀m)[Divides(m,n)→ (m = 1 ∨ m = n)]. Over twenty pages of K. Gödel’s
famous 1931 paper proving his “First Incompleteness Theorem” were devoted to the details of
translating the decidable predicate IsProof (S,~c) ≡ “~c is a formal proof of the statement S in
Bertrand Russell’s formal system called Principia Mathematica” into an arithmetical formula π.
Then it was observed that Kleene’s T -predicate could be “arithmetized” in a similar manner.2 Thus
putting back the quantifier blocks makes the whole

∑
k-predicate R into an arithmetical formula

that represents L. This is where the term “Arithmetical Hierarchy” came from. The vital link
between this and the “oracle” definition we originally gave for it is:

Theorem 4.1. (The Arithmetical Hierarchy Theorem of Stephen Kleene). Let k ≥ 0, and let
L ⊆ Σ′∗ Then

(a) L is a
∑
k-language if and only if L ∈

∑0
k.

(b) L is a
∏
k-language if and only if L ∈

∏0
k.

(c) L is a ∆k-language if and only if L ∈ ∆0
k.

Proof. First let us observe that for any k ≥ 0, (a) and (b) are equivalent, and both imply (c). Let
use write e.g. ~x for tuples (x1, . . . , xm) of formal variables, and use the same notation for strings
~x ∈ Σ′∗ regarded as having the form x1#x2# · · ·#xm where each xi belongs to Σ∗. For (a =⇒ b), let
L be a

∏
k-language. Then there is a

∏
k-predicate R of the form (∀~y 1)(∃~y 2) . . . S(~x , ~y 1, . . . , ~y k)

with S decidable that represents L. The negation ¬R of R represents the complement L̃ of L.
Bringing the negation “inside” makes ¬R equivalent to (∃~y 1)(∀~y 2) . . .¬S(~x , ~y 1, . . . , ~y k). Since
‘¬S′ is still decidable predicate, this is a

∑
k-predicate that represents L̃. By (a), L̃ ∈

∑0
k. Hence

by the original definition of
∏0
k, L ∈

∏0
k. The other half of (b), and the implication (b =⇒ a),

follow by similar arguments. Now for (c), let L be a ∆k-language. Then L is both a
∑
k-language

and a
∏
k-language. Hence by (a) and (b), L ∈

∑0
k ∩

∏0
k. By Theorem 2.2 (namely: for all oracle

sets A, REA ∩ co-REA = RECA), it follows that L ∈ ∆0
k. Conversely, if L ∈ ∆0

k then L ∈
∑0
k ∩

∏0
k,

so by (a) and (b)L is both a
∑
k-language and a

∏
k-language, so L is a ∆k-language.

Now we prove (a) by induction on k, also using the equivalence of (a) and (b) to help carry
through the induction hypothesis. The base case k = 0 is clear: a language L is recursive iff the
predicate ‘x ∈ L′ is decidable. So let k ≥ 1, and assume (a) and (b) for k − 1.

First suppose L is a
∑
k-language, and let R := (∃~y 1)(∀~y 2) . . . S(~x , ~y 1, . . . , ~y k) be a

∑
k-

predicate that represents L. Now ~y 1 is a sequence of variables y11y12 . . . y1j1 in an “existential
block,” but by using the double trick and sticking the decoding of strings y ∈ ((00∪11)∗01)j1−1(00∪
11)∗ as part of the decidable predicate S, we can replace ~y 1 by a single variable y1 ranging over
strings in Σ∗. Taking this modification as done, now define

L′ := { ~x#y : y ∈ Σ∗ ∧ (∀~y 2) . . . S(~x#y, ~y 2, . . . , ~y k) }.
2We could do it by converting the transition function δ of a 2HDFA into a program in an “equational

programming language,” but the details are much more laborious than the string-based coding of tuples
I’ve given in lectures. By the way: several more pages of Gödel’s paper went into arithmetically defining
his so-called β-function for coding sequences of numbers by a single number—e.g., β(a, b, c) = 2a3b5c. The
tupling function has the same purpose for strings.

7

The whole reason we cared about having y ∈ Σ∗ is so we could identify the ‘y’ part in ‘~x#y.′ Then
L′ is represented by a

∏
k−1 predicate, so by the induction hypothesis applied to (b), L′ ∈

∏0
k−1.

And L ∈ REL
′
, because the program:

y := 0;
if ~x#y ∈ L′ then accept
else increment y and try again.

accepts L with oracle L′. Similarly L ∈ REA where A is the complement of L′, by changing the
sentence to “. . . if ~x#y /∈ A then. . . ”—and since A ∈

∑0
k−1, L ∈

∑0
k by the definition of

∑0
k as

RE(
∑0
k−1).

Going the other way, suppose L ∈
∑0
k. Then there is a language A ∈

∑0
k−1, A ⊆ Σ∗,

and an oracle TM M such that L = L(MA). By the induction hypothesis, there is a∑
k−1-predicate R of the form (∃z1)(∀z2)(∃z3) . . . S(~x , z1, . . . , zk−1) that represents A. Then

(∀z1)(∃z2) . . .¬S(~x , z1, . . . , zk−1) represents Ã. Now define a big predicate:

B(M,x,~c , ~s ,~t , ~v) := [~c is an accepting computation of M on input x that has some
number m of query IDs in which the oracle answer was ‘yes’—i.e., the next ID listed in
~c has state qyes—and some number n of query IDs in which the oracle is recorded as
answering ‘no’, and ~s equals a list s1# · · ·#sm of the query strings si ∈ Σ∗ which were
answered ‘yes’, and ~t similarly lists those strings t1, . . . , tn which were answered ‘no’ in
~c] and:

(∀z ∈ Σ∗) : if z ∈ ((00 ∪ 11)∗01)m+n−101(00 ∪ 11)∗, then, decoding z uniquely as
z12, . . . zm2, z11, . . . , zn1, we have:

• for each i, 1 ≤ i ≤ m, (∃z3) . . . S(si, vi, zi2, z3, . . . , zk−1), and

• for each j, 1 ≤ j ≤ n, (∃z′2) . . .¬S(tj , zj1, z′2, . . . , z
′
k−1).

The part of B in [. . .] is all decidable by examining ~c . Hence the leading quantifier in B is
the ‘(∀z ∈ Σ∗)′. Everything which follows can be represented by a

∑
k−2-predicate. Hence B is

equivalent to a
∏
k−1 predicate. (A more rigorous way to see this is to show that the complement of

B is accepted by some TM with an oracle in
∑0
k−2 and hence belongs to

∑0
k−1, using the induction

hypothesis again to get this last sentence.) Finally, observe that for all x,

x ∈ L ⇐⇒ (∃~c ,~s ,~t , ~v)B(M,x,~c , ~s ,~t , ~v).

Hence L is represented by a
∑
k-predicate, so it is a

∑
k-language. The rest of the proof now follows

by induction.

This is sometimes called the weak hierarchy theorem, and the strong hierarchy theorem is the
name for the following: (I use ‘⊂′ for proper containment.)

Theorem 4.2 (Kleene, after Turing). For all k ≥ 0,
∑0
k ⊂

∑0
k+1.

Proof. Define by induction: AP0 := ∅, and for each k ≥ 1, APk := {code(M)x : M with oracle
APk−1 accepts x}. Then AP1 is essentially the same as the language of the Acceptance Problem
as defined in class, while AP2 is the same as the language AP(B) where B := AP in the proof of

8

Theorem 2.4 above. For each k, APk ∈
∑0
k. The proof of Theorem 2.4 extends to show that for

all k, APk+1 /∈ REC(APk). Since APk+1 ∈
∑0
k+1 while

∑0
k ⊆ REC(APk),

∑0
k ⊂

∑0
k+1. In fact,

by the theorem that for all oracle sets A, REA ∩ co-REA = RECA, it follows that for all k ≥ 1,∑0
k 6=

∏0
k. For every k ≥ 1, the language

APk ⊕ ÃPk := { 0x | x ∈ APk } ∪ { 1y | y ∈ ÃPk }

is recursive in APk (by a 1tt reduction, in fact) and so belongs to ∆0
k+1, but belongs to neither∑0

k nor
∏0
k. Hence we actually have the stronger conclusion that for all k ≥ 1,

∑0
k ⊂

∑0
k ∪

∏0
k ⊂

∆0
k+1 ⊂

∑0
k+1.

5. Tarski’s Theorem on the Undefinability of Truth

The “Strong Hierarchy Theorem” has the following intuitive reading: for each k > 0, there are
some languages A, in particular A := APk, that can be defined using k quantifiers on a recursive
predicate, but are not definable with any fewer than k quantifiers. Instead of using the machine-
defined languages APk, we can use the proof of the “Weak Hierarchy Theorem” to the same effect.
A
∑
k-sentence is a

∑
k-predicate which has no free variables.

Definition 5.1. For each k ≥ 1, let Tk := {code(Q) : Q is a
∑
k sentence that is true}, where code

is some reasonable encoding of the language of logic over Σ∗.

Theorem 5.1. For each k ≥ 1, and every language A ∈
∑0
k, A ≤m Tk, and Tk itself belongs to∑0

k.

Proof. By the weak hierarchy theorem, A is representable by a
∑
k-predicate of the form R(x) :=

(∃y1)(∀y2) . . . S(x, y1, . . . , yk). For any string w ∈ Σ∗, let Rw be the sentence R(w); i.e.,

Rw := (∃y1)(∀y2) . . . S(w, y1, . . . , yk).

Clearly there is a total recursive function σ such that for all w, σ(w) gives the code of Rw. Then
for all w ∈ Σ∗, w ∈ A ⇐⇒ R(w) is true ⇐⇒ Rw ∈ Tk. So A ≤m Tk.

To see that Tk itself belongs to
∑0
k, just program a TM M that given as input any encoding

of a
∑
k-sentence (∃y1)(∀y2) . . . Q(y1, . . . , yk), uses Tk−1 as an oracle to hunt for a string w such

that the
∏
k−1 sentence (∀y2) . . . Q(w, y2, . . . , yk) is true. By induction we have Tk−1 ∈

∑0
k−1, so

Tk ∈ RE(
∑0
k−1), so Tk ∈

∑0
k.

Corollary 5.2 (Tarski’s Theorem). There is no arithmetical definition of arithmetical truth:
the language TRUTH of true arithmetical sentences does not belong to the arithmetical hierarchy.

Proof. Suppose it did. Then for some k, we would have TRUTH ∈
∑0
k. But clearly, for any

k, Tk ≤m TRUTH . In particular, Tk+1 ≤m TRUTH . Since APk+1 ≤m Tk+1, this would give
APk+1 ≤m TRUTH , hence APk+1 ∈

∑0
k, but we know this is false.

Generally, for any language class C, a language B with the properties B ∈ C and (for all A ∈ C,
A ≤m B) is said to be complete for C. For each k ≥ 0, both APk and Tk are complete for C. If D
is another language such that D ∈ C and B ≤m D, then D is also complete for C.

9

Examples: (1) The language FIN := {i : L(Mi) is finite} is represented by the predicate

(∃y ∈ Σ∗)(∀x ∈ Σ∗)(∀~c ∈ Σ∗)[x > y → ¬Acc(i, x,~c)].

Since this is a
∑

2-predicate, FIN ∈
∑0

2. As an exercise (this or something like it will be covered in
lecture), show that T2 ≤m FIN. Hence FIN is

∑0
2-complete.

(2) The language TOT belongs to
∏0

2, since for any TM M ,

code(M) ∈ TOT ⇐⇒ (∀x)(∃~c)T (code(M), x,~c).

To show that it is complete for
∏0

2, let A be any language in
∏0

2. Then there is a recursive predicate
R such that for all x,

x ∈ A ⇐⇒ (∀y)(∃z)R(x, y, z).

Now given x, let f(x) be the code of a TM Mx that on any input y executes

z := 0; WHILE (NOT R(x, y, z)) DO z := z + 1END-WHILE; ACCEPT.

Then x ∈ A ⇐⇒ M is total, and since the code of Mx is straightforwardly computable once x is
given, this is a many-one reduction from A to TOT .

Hence any definition of FIN or TOT in arithmetic must use at least two unbounded quantifiers,
and any two-quantifier definition of FIN must begin with ‘there exists. . . ’, and for TOT , ‘for all. . . ’

END OF HANDOUT.

10

