String and Language "Borders" Examples:

The empty string is denoted by \(\varepsilon \) (or \(\lambda \) or """).
The length of \(\varepsilon \) is zero: \(|\varepsilon| = 0 \).
For any string \(x \), \(\varepsilon \cdot x = x \cdot \varepsilon = x \).

Concatenation is not commutative: \(a \cdot b \neq b \cdot a \).

The empty set \(\emptyset \) is a language, i.e. \(\text{set}\langle \text{string} \rangle \).
Its cardinality \(\|\emptyset\| \) is zero.

We want \(L(M) = \{ \varepsilon, ab, ba, abab, abba, baba, \ldots \} \).

How about \(baba \)? No (\(\varepsilon \) followed by \(0 \) or \(a \)).

Definition: An NFA is a 5-tuple \(N = (Q, \Sigma, \delta, s, F) \) where
\(Q, \Sigma, s, F \) are as in a DFA and \(\delta \subseteq (Q \times \Sigma) \times Q \).

Typical example:

An NFA with \(\varepsilon \)-transitions has \(\delta \subseteq (Q \times \{(\varepsilon, \varepsilon)\}) \times Q \).
Instead, which means it also has instructions \((p, \varepsilon, q) \) which do not process a character.

Can \((p, \varepsilon, q) \) but it has no use.

Start \(\rightarrow a \rightarrow b \rightarrow a \) NFA

\((ab)^*(ba) \) leads to NFA

DFA

Start \(\rightarrow a \rightarrow b \rightarrow a \) leads to NFA

\(ab, abba, baba, \ldots \)?

No (\(\varepsilon \) followed by \(0 \) or \(a \) or \(b \)).
The Wed. 9/4 lecture will pick up the definition of regular expressions and the rest of the proof of how to convert them to NFAs after first defining:

- Computations that process a string x from a state p to a state q.
- The concatenation of two languages and the Kleene star of a language.