Def **A**. An NFA N can process a string $x \in \Sigma^*$ from state p to state q if there is a sequence $(q_0, U_1, \ldots, q_{m-1}, U_m, q_m)$ such that:

- $q_0 = p$ and $q_m = q$,
- for all $i, 1 \leq i \leq m$, (q_{i-1}, U_i, q_i) is in δ.
- The sequence is called a (valid) computation (path).

Def: $L_p = \{x \in \Sigma^* : N$ can process x from p to $q\}$, and finally formally:

$\mathcal{L}(N) = \bigcup_{q \in F} L_q = \{x \in \Sigma^* : N$ can process x from some start state $q \in F\}$.

Example: $N = \epsilon$.

Is $x = 1011$ in $L(N)$?

No: $(5, 1, 8, 0, 8, 1, 8) \ldots$ cannot be validly completed.

State f.

Def **B**. The concatenation of two languages $A, B \subseteq \Sigma^*$ is defined by:

$A \cdot B = \{xy : x \in A \land y \in B\}$.

Translate English: “and then y”.

Does $A \cdot A = \{x \cdot x : x \in A\}^*$?

No: Common error.

$A \cdot B = \{z : z$ can be broken as $z = x \cdot y$ s.t. $x \in A \land y \in B\}$.

$A \cdot A = \{z : z$ can be broken as $z = x \cdot y$ s.t. $x \in A \land y \in A\}$.

$A = \{0, 01\}$

$A \cdot A = \{00, 01, 010, 0101\}$

$B = \{0, 10\}$. Also note:

$A \cdot B = \{00, 010, 0101, 0110\}$.

Always $A \cdot B \subseteq A \cdot |B|$, but $\|A \cdot B\| < |A| \cdot |B|$ is possible.
Picking up in the inductive cases of the proof, given regulars \(\alpha, \beta \) and equivalent NFAs \(N_\alpha, N_\beta \).

- \(Y = L_\ast (\beta) \) is a regex,

 \[L(Y) = L(\beta) \cdot L(\beta) \cdot L(\beta) \cdot \ldots \]

 and given \(N_\alpha,N_\beta \), build \(N_Y \) =

 we need to prove \(L(N_Y) = L(Y) \). Not immediately obvious, but the flow:

 \(\begin{align*}
 A^* &= A^* \cdot A \cdot A^* \cdot A \\
 A \cdot B &= I \\
 A \cdot A &= I \\
 A \subseteq \emptyset \\
 B &= \emptyset \\
 \end{align*} \)

 By the particular series form of \(N_Y \), \(L(N_Y) = \{ w \in \Sigma^* : w \text{ can be broken as } w = x_1 y_1 \ldots x_n y_n \text{ and } L(N_{y_1}), \ldots, L(N_{y_n}) \} \)

 Induction hypothesis:

 about correctness of \(\Delta \) = \(\{ w \in \Sigma^* : w \text{ can be broken as } w = x_1 y_1 \ldots x_n y_n \text{ and } L(N_{y_1}), \ldots, L(N_{y_n}) \} \)

 the NFAs \((N_\alpha \cdot L(\beta)) \cdot L(\beta) \) = \(A(Y) \cdot L(\beta) \), as needed to propagate the induction hypothesis.

Equivalent NFAs \(N_\alpha, N_\beta \).

\(\gamma = \gamma \), \(L(\gamma) = L(\alpha)^* \) defined via

\[\begin{align*}
A^* &= A^* \cdot A_1 \cdot A_2 \cdot A_3 \cdot \ldots \\
A \cdot B &= I \\
A \cdot A &= I \\
\emptyset \subseteq \emptyset \\
\emptyset &= \emptyset \\
\end{align*} \]

Feedback Circuit (with regex) \(\Box \)

\(\begin{align*}
A \cdot B &= \{ w : w \text{ can be broken as } w = x_1 y_1 \ldots x_n y_n \text{ and } L(N_{y_1}), \ldots, L(N_{y_n}) \} \\
A \cdot A &= \{ w : w \text{ can be broken as } w = x_1 y_1 \ldots x_n y_n \text{ and } L(N_{y_1}), \ldots, L(N_{y_n}) \} \\
\emptyset \subseteq \emptyset \\
\emptyset &= \emptyset \\
\end{align*} \)

\(\begin{align*}
A \cdot B &= \{ w_0, 0, 0, 0, 1, 0, 0, 1, 0, 1 \} \\
A \cdot A &= \{ w_0, 0, 1, 0, 0, 1, 0, 0, 1, 0 \} \\
\emptyset \subseteq \emptyset \\
\emptyset &= \emptyset \\
\end{align*} \)

\(\begin{align*}
A \cdot B &= \{ w_0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0 \} \\
A \cdot A &= \{ w_0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0 \} \\
\emptyset \subseteq \emptyset \\
\emptyset &= \emptyset \\
\end{align*} \)

Always:

\(\| A \cdot B \| = \| A \cdot B \| \), but \(\| A \cdot B \| < \| A \cdot B \| \) is possible.