Def: The concatenation of two languages $A, B \subseteq \Sigma^*$ is $A \cdot B = \{xy : x \in A \land y \in B\}$

Example: $A = \{0, 01\}$, $B = \{0, 10\}$

$A \cdot B = \{00, 010, 0110\}$

Compare: $A = \{00, 010, 0110\}$

$A \times B = \{(0, 0), (0, 10), (01, 0), (01, 10)\}$

Note: Different as pairs is possible.

Always $|A \times B| \leq |A| \cdot |B|$, but $|A \cdot B| < |A| \cdot |B|$

Is $A \cdot A = \{x : x \in A\}$? No: $A \cdot A$ above $= \{00, 001, 010, 011, 100\}$

Rewrite the def as: $A \cdot B = \{\exists z \in \Sigma^* : z \text{ can be broken as } z = x \cdot y \text{ such that } x \in A \land y \in B\}$

Def: $A \cdot A = \exists z$; z can be broken as $z = x \cdot y$ where $x \in A$ and $y \in A$.

$L^0 = 1$

$A^0 = \emptyset$. By convention, $A^n = \emptyset$ for all A, even \emptyset.

Def: $A^\ast = \cup_{m=0} A^m = \{\emptyset, A, A^2, A^3, \ldots\}$. Kleene Star.
Rejoining the proof of (the first leg of) Kleene's Theorem

Induction case 5. Given regexps \(\alpha \) and \(\beta \). By Ind. Hyp we may take NFAs, \(N_\alpha, N_\beta \) such that
\[L(N_\alpha) = L(\alpha), \quad L(N_\beta) = L(\beta), \]
and we build \(N_\gamma \) from \(N_\alpha, N_\beta \) like so:

\[
\begin{align*}
N_\gamma : \\
\quad s_\gamma \xrightarrow{\varepsilon} s_\alpha \xrightarrow{\varepsilon} s_\beta \xrightarrow{\varepsilon} s_\gamma
\end{align*}
\]

Need to prove:
\[L(N_\gamma) = L(N_\alpha) \cdot L(N_\beta) \] so
\[L(\gamma) = L(\alpha) \cdot L(\beta) \]

For any string \(z \in Z^* \), this is our first step.

\(z \in L(N_\gamma) \) if \(z \) can process \(z \) from \(s_\gamma \) to \(s_\gamma \). By diagram

\(z \) can be broken as \(z = x \cdot y \) such that \(N_\alpha \) can process \(x \) from \(s_\alpha \) to \(s_\beta \) and \(N_\beta \) can process \(y \) from \(s_\beta \) to \(s_\gamma \).

\(z \) can be broken as \(z = x \cdot y \) such that \(x \in L(N_\alpha) \) and \(y \in L(N_\beta) \).

\(z \in L(N_\alpha) \cdot L(N_\beta) \), so
\[L(N_\gamma) = L(N_\alpha) \cdot L(N_\beta) \]

By I.H.,
\(L(N_\gamma) = L(\alpha) \cdot L(\beta) \), which = \(L(\gamma) \)

\(i \) \(L(N_\gamma) = L(\gamma) \) is proved by defn of \(L(\gamma) \).
6. Given just λ and N_{λ} st. $L(N_{\lambda}) = L(\lambda)$, we define $\gamma = \alpha^*$ to have the semantics

$$L(\gamma) = [L(\alpha)]^*.$$

Build N_{γ} as:

Then N_{γ} can process a string z from S_{γ} to F_{γ} iff z can be broken as $z = z_1 \cdot z_2 \cdots \cdot z_m$ such that for each i, $1 \leq i \leq m$,

for each i, $z_i \in A^*$, for each i, $z_i \in A^*$, we get $L(N_{\gamma}) = L(N_{\lambda})$

by IH $= L(\alpha)^* = L(\gamma)$.

This also completes both the formal inductive definition of regular expressions γ and the proof that some NFA N_{γ} gives $L(N_{\gamma}) = L(\gamma)$.

Without the blue ϵ-arc we get: $L(N_{\lambda})^+ = L(N_{\lambda}) \cup L(N_{\lambda})^2 \cdots$ instead.