The relation \(x \sim^i_y \equiv (\forall z \exists^* \zeta) \ L(xz) = L(yz) \) is an equivalence relation (for any language \(L \)).

- Reflexive: \(x \sim^i_x \) (immediate)
- Symmetric: \(x \sim^i_y \Leftrightarrow y \sim^i_x \) (immediate "by form")
- Transitive: \(w \sim^i x \land x \sim^i y \Rightarrow w \sim^i y \)

\[\begin{align*}
(\forall z_1)(L(xz_1) = L(yz_1)) & \land (\forall z_2)(L(xz_2) = L(yz_2)) \Rightarrow \\
(\forall z_3)(L(xz_3) = L(yz_3))
\end{align*}\]

Hence, the relation \(\sim^i \) partitions \(\Sigma^* \) into equivalence classes.

Defn. A set \(S \) is a system of representatives for an equivalence relation \(\sim \) if it does not contain more than one member from any equiv. class. Complete if it has one.

- Every regular language has a complete system of representatives.

Mylhill–Nerode Theorem: A language \(L \) is regular if and only if \(\sim^i \) partitions \(\Sigma^* \) into finitely many equiv. classes. That is, if all PD sets are finite.

Proof: We show \(\Rightarrow \) by contradiction. Now show \(\Leftarrow \)“

Design an automaton \(M = (Q, \Sigma, \delta, s, F) \) where \(Q \) is the set of equivalence classes.

Note: if \(x \in L \) and \(x \sim^i y \), then \(y \in L \) (consider \(z = s \)).

This is well-defined because if \(y \) \& any other representative of \(R_x \), then \(R_y = R_x \), so \(S(R_y, c) \) gives the same answer.

Given that \(Q \) is finite, \(M \) is a DFA, so \(L \) is regular.

Corollary: If \(k \) \(\in \mathbb{N} \), then no other DFA \(M \) has \(L(M) = L \) can have fewer than \(k \) states, because a complete set of \(k \) representatives is a PD set of size \(k \). Moreover, \(M \) is unique among PDs of \(k \) states. (That is, determined up to

- Every regular language has a unique minimal-size DFA \(M \) s.t. \(L(M) = L \).
Proofs & Nonregularity by MNT: Fill out a "proof script".

Take \(S = \{ z \in \{0, 1\}^* | \exists w \in \{0, 1\}^*, z = 0w1 \} \). (Justify if needed that \(S \) is infinite.)

Let any \(x, y \in S \), \(x \neq y \), be given. Then we can helpfully write \(x = \tilde{x}m \) and \(y = \tilde{y}n \) when non-

Take \(z = D^n \). Then \(L(xz) \neq L(yz) \) because \(xz = \tilde{x}m^n \) gets killed since \(m \) is a multiple of \(n \) but \(\tilde{y}n \) survives. Sino \(x, y \in S \) are arbitrary, \(S \) is PD.

Example: \(L = \) "The spears-and-dragons language"
if you could save any number of stones!

\[L' = \{ x \in \{0, 1\}^* : \text{there is a suffix w of } x \text{ that makes } xw \text{ balanced} \} \]

If \((x \in S) \land (x, y \in S, x \neq y, \exists z \in \{0, 1\}^* \land L(xz) \neq L(yz)) \) then \(L \) is not regular.

Which direction, \(\Rightarrow \) or \(\Leftarrow \), did we show in proving that having an infinite PD set makes \(L \) non-regular?

Likewise \(\exists a \in \{0, 1\}^* : \exists a \in \{0, 1\}^* \) is non-regular.

Arbitrary \(S \) is PD \(\Rightarrow \) \(\exists a \in \{0, 1\}^* : \exists a \in \{0, 1\}^* \) is non-regular.

Take \(S = \{ \epsilon \}, \) clearly infinite. Let any \(x, y \in S, x \neq y, \)
be given. Then \(x = \epsilon, y = \epsilon, \) where \(m \neq n \). Note \(z = \epsilon \).

Then \(xz = \epsilon \) is balanced, but \(yz = \epsilon \) is not.

So \(BAL(xz) \neq BAL(yz) \), so \(S \) is an infinite PD set for BAL. \(\Box \)

Note that if \(m > n, \) \(\epsilon^n \) and \(\epsilon^m \) are both in \(L' \).

So we need "wlog \(m \geq n \)" trick to make this work for \(L' \).

In fact, \(L' \) is the same as "spears-and-dragons with \((-\$) \) = 0."

Example: \(L_0 = \{ \text{balanced-paren strings} \} \), called \(BAL \).

Take \(S = \{ \text{strings} \} \), clearly infinite. Let any \(x, y \in S, x \neq y, \)
be given. Then \(x = \text{strings}, y = \text{strings}, \) where \(m \neq n \). Note \(z = \text{strings} \).

Then \(xz = \text{strings} \) is balanced, but \(yz = \text{strings} \) is not.

So \(BAL(xz) \neq BAL(yz) \), so \(S \) is an infinite PD set for BAL. \(\Box \)

Note that if \(m > n, \) \(\text{strings}^n \) and \(\text{strings}^m \) are both in \(L' \).

So we need "wlog \(m \geq n \)" trick to make this work for \(L' \).

In fact, \(L' \) is the same as "spears-and-dragons with \((-\$) \) = 0."