Let \(L \) be a language we "hope" is regular. Let \(x \) and \(y \) be two strings in \(\Sigma^* \) \((x+y) \)
Suppose there is a string \(z \in \Sigma^* \) such that
\(xz \in L \) but \(yz \notin L \) or vice-versa,
\(\text{i.e. } xz \in L \) and \(yz \in L \).

\[L(xz) \neq L(yz) \]

Then any possible DFA \(M = (Q, \Sigma, \delta, s, F) \) s.t. \(L(M) = L \)
must process \(x \) and \(y \) to different states \(p, q \)
from \(s \)

Write \(x \equiv_L y \) if for all \(z \in \Sigma^* \), \(L(xz) = L(yz) \)

Then \(x \equiv_L y \) means \(\forall z \in \Sigma^* \) \(L(xz) = L(yz) \)
as above.

Note: \(x \equiv_L y \)
For any \(L \), \(x \equiv_L y \leftrightarrow y \equiv_L x \) because the condition is symmetric.
and \(w \equiv_L x \land x \equiv_L y \Rightarrow \forall z \in \Sigma^* \)
\(L(wz) = L(xz) \land L(xz) = L(yz) \)
\(\Rightarrow \forall z \in \Sigma^* \), \(L(wz) = L(yz) \), \(i.e. \Rightarrow w \equiv_L y \).
Thus \equiv_L is an equivalence relation on Σ^*.

It partitions Σ^* into equivalence classes. There might be finitely or ω-many equivalence classes. $x \neq_L y$ means x and y are in different classes.

Mullin-Nerode Theorem (1958, independently by John Myhill and Anil Nerode, Cornell)

A language L is regular \iff the relation \equiv_L has finitely many equivalence classes.

Proof: \Rightarrow states: if \equiv_L has ω-many equivalence classes, then L is not regular.

By L having ω-many equivalence classes, we can make an infinite set S by choosing one string from each class S has the property: $(\forall x, y \in S \forall u \exists y \neq_L u) x \neq_L y$.

Suppose there were a DFA M s.t. $L(M) = L$. It would have some finite number K of states. But S has more than $(\operatorname{any}) K$ strings, and so M would be forced: M must send some pair $x, y \in S$ to the same state. Contradiction.
Proof, part 2 (\Leftarrow): if L has finitely many equiv. classes $\rightarrow L$ is regular

For every equivalence class $[x]_L$, we can think of a least string in the class as its shortest name.

Define $M = (Q, \Sigma, \Delta, s, F)$ where

$Q = \{\text{equiv. classes}\}$, $s = [\varepsilon]$, $F = \{[x] : x \in L\}$

and for all $c \in \Sigma$ and $[x] \in Q$ where x is "the name"

$\Delta([x], c) = [xc]$

Then $L(M) = L$.

"The name" might have a lesser name but it's the same class.

And if there are only finitely many equiv. classes, then M really is a DFA s.t. $L(M) = L$,

so L is regular. □

Self-study: convince yourself that for all x, y, c

$[xc] = [yc] \iff [x] = [y]$

This says that "Δ is well-defined?"