Theorem: For every K-tape TM $M_K = (Q, \Sigma, \Gamma, \delta, q_0, s, q_f, \text{move})$, we can build a 1-tape TM M_1.

Proof:

1. Let K be a tape on our tape $\Gamma = \{0, 1, \text{blank}\}$, including "blanked gaps" to mark where the K-tape heads of M_K were.

2. Take $G = \Gamma \cup (\Gamma \setminus \{0, 1\})^+$. Induct on G which is $\neq \emptyset$. Normally, $G'': \emptyset$.

If M_K really wants to write an a on tape 1, then 1, other x, M_1 writes a' instead, and changes the rest D to 3.

Every REW cycle was at most $3 + s$ steps, $O(3S)$ steps, where $S \leq 2$.

Every move from $\Lambda \times 3$. Simp $s \leq n$, but M_K has run for n steps.

The total time cost is $O(n)$.

(Handwritten notes and diagrams for explaining the process of simulating M_K on the 1-tape TM M_1.)

2. Begin a Read-Eval-Write (REW) cycle that always begins at a state q of M_K and ends at a state q' of M_K.

3. At the begin q_f of M_1 to the right of Λ and all heads of M_1 are between Λ and q_f.

4. Read while sweeping $L \to R$. The K-tape c_i-th of M_K is always marked x_i.

5. Execute the current instruction (q, x_i, c_i) in a 3-tape SWEEP form.

6. Write changes to the tape by M_K using x_i as read i back to Λ.

(Additional notes and diagrams for explaining the read and write process.)
Also some discussion of Assignment 1: