Theorem: For every (known) high-level language (HLL) \(L \), and every program \(P \) written in \(L \), we can build a TM \(M_P \) such that for all (streamed) inputs \(x \), \(N_P(x) \) emulates \(P(x) \).

Proof: Compile \(P \) to the mini-assembler for the object code inside
the single TM \(M_P \) to get \(M_P \). Moreover, if \(P \) runs in \(O(n^k) \) time
then so does \(M_P \) (with exponent \(2k + 3 \times \text{greater or so} \)).

Church Turing Thesis: 1. This will hold for any HLL that humans will ever devise. \(\checkmark \)
2. For every human or alien \(A \) that makes consistent decisions \(D(x) \) on inputs \(x \), there is a TM \(M_A \) that on input \(x \) outputs \(D(x) \).

Poly-Time CT Thesis
(Alan Cobham, Ted juda, 1965)

Moreover, no HLL will deliver super-polynomial speedup of TMs.

May be false if we allow quantum computing hardware.

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec. def.</td>
<td>A language (L) is recursively enumerable (r.e.) if there is a TM (M) such that (L(x) = A) and (\forall x \in M(x))</td>
</tr>
</tbody>
</table>
| R. def. | A function \(f: \Sigma^* \to \Sigma^* \) is computable if there is a \(\text{TM} M \) that on any \(x \in \Sigma^* \) with \(\text{output} f(x) \). If \(M \) halts on input \(x \), then \(f(x) \) is defined; otherwise, \(f(x) \) is undefined. If on the other hand, \(f(x) \) is undefined, \(M \) is allowed to bubble it

The class of all decidable languages is denoted by \(\text{REC} \) or \(\text{DEC} \).

The class of all c.e. languages is denoted (only) by \(\text{RE} \).

Missing part of definition at top is “Turing acceptable” as a synonym for the other three terms.
Theorem: A language L is decidable if its characteristic function $L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$ is total computable.

L is r.e. \iff its partial characteristic function $T_L(x) = \begin{cases} 1 & \text{if } x \in L \text{ is partial} \\ \text{undefined} & \text{if } x \notin L \text{ computable} \end{cases}$ is total computable.

Friday: Define $\frac{2}{3} \notin L$: M does not accept $\langle M \rangle$ if M is not Turing acceptable.

Church-Turing Thesis: 1. This will hold for any M that humans will ever design.
 2. For every human or alien A that makes consistent decisions in \mathbb{N}, A will halt on input $\langle M \rangle$. A is a universal Turing machine.

Polynomial Time (P) Thesis:

(Alan Cobham, 1965) 1. Any M is total, which will allow super-polynomial work on \mathbb{N}.

Theorem: \mathbb{N} is not \mathbb{N}-computable, which is an open problem. More generally, we can allow quantum computing hardware.