Defn: A and B are many-one equivalent, written $A \equiv_m^p B$ if $A \leq_m^p B$ and $B \leq_m^p A$. Note: \leq_m and \leq_m^p are transitive, so $A \equiv_m B$ and $A \equiv_m^p B$ are equivalence relations.

Example: $K_m \leq_m A_{TM}$ by restriction and $A_{TM} \leq_m K_m$ by all-one switch.

Theorem: For every language $A \in \text{RE}$, $A \leq_m A_{TM}$.

Proof: Given A, we can take a TM M_a such that $L(M_a) = A$. Then for all $x \in \sum^*$,

- Define $f(x) = \langle M_a, x \rangle$.
- Then $x \in A \iff M_a \text{ accepts } x \iff \langle M_a, x \rangle \in A_{TM}$.

Thus $K_m \equiv_m f \circ A_{TM}$, so the reduction is Correct.

Corollary: If A is complete for C-RE, then $A \leq_m A_{TM}$.

Defn: A language B is hard for RE under \leq_m if for all $A \in \text{RE}$, $A \leq_m B$. It is also RE-complete if $\text{RE} \subseteq \leq_m B$.

If for all $A \in \text{RE}$, $A \leq_m B$, then B is RE-complete.

Types of languages B: $B \equiv_m A_{TM}$ are RE-complete.

- Given any class C and language B. It is hard for C under \leq_m if for all $A \in C$, $A \leq_m B$.

Theorem: If $A \equiv_m B$ then the class \leq_m is the same as \leq_m^p.

If $A \equiv_m^p B$, then A and B are equivalent under \leq_m^p.

Corollary: If A is RE-complete, then $A_{TM} \leq_m^p A$.

When A_{TM} has a peak, \leq_m is the same as \leq_m^p.

Conclusion: If A is RE-complete, then A_{TM} is RE-complete. Hence, RE and RE are equivalent under \leq_m^p.