For any languages $A, B \subseteq \Sigma^*$, write $A \leq_m B$ (m for "many-one" or "mapping") if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all y, $x \in A \iff f(x) \in B$. If f is polynomial-time computable we write $A \leq_p B$. If log-space computable, write $A \leq_{\log} B$ etc.

Note about the computation of functions.

- Input tape: read-only
 - $\Delta X_1 X_2 X_3 X_4 \ldots X_n$
- Work tapes:
 - \vdots
 - \vdots
- Output "tape": one-way, write-only = a stream, not counted against space bound

Text identifies "streaming algo" with $O(\log n)$ space functions. Std. def allows $O((\log n)^m)$ for some m: "poly-log space."
Example: \(K_{\text{TM}} = \{ X : X \text{ codes TM } M \text{ s.t. } M \text{ accepts } X \} \)

Then \(A_{\text{TM}} = \{ \langle M, x \rangle : M \text{ accepts } x \} \).

\(K_{\text{TM}} \leq_m A_{\text{TM}} \text{ via the mapping } f(x) = \langle x, x \rangle \).

NE_{\text{TM}}: Instance: A DTM \(M \).

Question: Is \(L(M) \neq \emptyset \)?

As a language:

\(\text{NE}_{\text{TM}} = \{ \langle M \rangle : L(M) \neq \emptyset \} \).

Undecidable.

Theorem: \(\text{NE}_{\text{TM}} \) is c.e. but \(A_{\text{TM}} \leq_m \text{NE}_{\text{TM}} \) so it is c.e.

Proof: "Is c.e. := Imagine a NFA \(N \) that on input \(\langle M \rangle \) guesses a string \(x \) and accepts it if and when \(M \) accepts \(x \). Runs \(M(x) \), then \(L(N) = \text{NE}_{\text{TM}} \) can convert \(N \) to DTM, so \(\text{NE}_{\text{TM}} \) is c.e.

Reduction: Map from \(A_{\text{TM}} \), instances \(\langle M, x \rangle \)

Map to a single machines \(\langle M' \rangle \) which are instances of the \(\text{NE}_{\text{TM}} \) problem.

Then \(\langle M, x \rangle \in A_{\text{TM}} \iff M \text{ accepts } x \iff \langle M' \rangle \in \text{NE}_{\text{TM}} \iff M' \text{ accepts every } y \iff L(M') = \Sigma^* \implies L(M') \neq \emptyset \). But \(\langle M, x \rangle \in A_{\text{TM}} \iff \forall y, M'(y) \text{ never can accept } \iff f(X, x) \in \text{NE}_{\text{TM}} \iff A_{\text{TM}} \leq_m \text{NE}_{\text{TM}} \). So \(A_{\text{TM}} \leq_m \text{NE}_{\text{TM}} \).

Simulate \(M(x) \) if and when \(M \) accepts \(x \)

Accept \(y \).
Convention: The relation $A \leq_m B$ is diagrammed by having the angle from A up to B be at least as steep as the cone walls.

Monday Preview: This will follow from the "Reduction Theorem": Suppose $A \leq_m B$.

Then:

- If B is decidable, then A is decidable.
- B is c.e. \Rightarrow A is c.e.
- B is co-c.e. \Rightarrow A is co-c.e.

And when we know $A \leq_P B$:

- $B \in P \Rightarrow A \in P$
- $B \in \text{coNP} \Rightarrow A \in \text{coNP}$
- $B \in \text{NP} \Rightarrow A \in \text{NP}$
- $A \in \text{NP}$