Define $\text{ALL-in} = \Sigma < w > : L^*(w) = L$.

We've seen $A_{\text{in}} \leq_m \text{ALL-in}$ via $< (m, w) > \rightarrow M =\{1\}$, where $M =\{1\}$ accepts w if $L^*(w) = L$.

$< (m, w) > \in M$ accepts w if and only if $L^*(w)$ is regular.

`< (m, w) > \in M$ does not accept w.

Define the problem

IN: $A_{\text{in}} M$

OUT: Does $L(M)$ is regular?

Input x. If $x \in B$, accept x. Otherwise, reject x.

Pick $B = \Sigma^* \setminus \Sigma^1$. If $w \in B$, then $L(M)$ is not regular.

Edit the All-in Turing machine to make it B or Nothing:

For $< (m, w) > \in M$, $L(w) = B \implies L(M)$ is not regular.

For $< (m, w) > \in M$, $L(w) = \emptyset$ as before, and \emptyset is regular.