Reduction Meta-Theorem: Suppose B is in P time decidable and $A \leq_p B$. Then A also is decidable.

Proof: Take a $p(n)$-time machine M_B such that $L(M_B) = B$.

Build a machine M_A for A as follows, using a total machine T computing the reduction f. By def of $A \leq_m B$ via f,

Then for all $x \in \Sigma^*$:

$\forall x \in A \iff f(x) \in B$

We deduced this.

$M_A \text{ accepts } x \iff M_B \text{ accepts } y = f(x)$

Hypothesis: $L(M_B) = B$

$\therefore L(M_A) = A$.

Thus A is decidable.

How can we bound the running time of M_A? Not only could $T(f(x))$ take $O(|x|^2)$ time, it could output y of length n':

$|y| = n' = n^2$.

M_B runs in time $O(\ell y)^K = O(n'^K) = O(f(n^2)^K) = \text{time } O(n^{K\ell})$. Still a (bigger) polynomial time!
Corollary: If \(\overline{B} \) is c.e. and \(A \leq_m B \) then \(A \) is c.e.

Proof: \(B \vdash B \) being c.e., we can take a TM \(M_B \) s.t. \(L(M_B) = \overline{B} \). (\(B \) is c.e.)

Theorem gives a TM \(M_A \) s.t. \(L(M_A) = \overline{A} \). because

\[A \leq_m B \implies \exists f \text{ s.t. for all } x \in \Sigma^*, \ x \in A \iff f(x) \in B. \]

Applications come from the contrapositive:

- Suppose \(A \leq_m B \).
 - If \(A \) is undecidable then \(B \) is undecidable.
 - If \(A \) is not c.e. then so is \(B \).
 - If \(A \) is not co-c.e., then \(B \) is not either.
"The" Halting Problem: INST: A TM M, and an input y to M

$H_P^M = \{(M, y): M(y) \downarrow\}$ GUESS: Does $M(y) \downarrow$?

Show $AP_{TM} \leq_m H_P^M$, so H_P^M is undecidable.

Reducible function f needs to map

$\langle M, x \rangle$ to $\langle M', y \rangle$ st.

$M'(y)$ halts when and only when $M(x)$ accepts.

Do with $y = x$ (but we'll generically on Friday)

$\langle M, x \rangle \mapsto \langle M', x \rangle$ $M' =$

If $M(x)$ halts w/o accepting, $M'(x)$ doesn't halt at y.

If $M(x)$ doesn't halt,

$M'(x)$ doesn't halt either. So the traditional Halting Problem is undecidable, indeed its language is (c.e. but) not p-c.e.