Last time: $A_{TM} \leq_{m} \overline{ALL_{TM}}$, so ALL_{TM} is not co-c.e.
Show $D_{TM} \leq_{m} ALL_{TM}$, so ALL_{TM} is not c.e.

Try 3: "Delay Switch".
Need $\langle M \rangle \rightarrow \langle M' \rangle$ st.

$\langle M \rangle \in D_{TM} \Rightarrow \langle M \rangle$ does not accept its own code $\Rightarrow \text{LIN' } = \Sigma$.

$\langle M \rangle \notin D_{TM} \Rightarrow (M) \text{ does accept } L(M) \Rightarrow L(M') \neq \Sigma$.

Construction:
Given any TM M,
Map $M \rightarrow M' = \langle M \rangle$.

Key "delay" point: If M does accept $\langle M \rangle$ it does so in some number t of steps, so that whenever $|X| = n \geq t$, this acceptance is discovered and X is rejected by M.
So $\langle M \rangle \notin D_{TM} \Rightarrow (3t) \text{ L}(M) \subseteq \{0, 1\}^* \Rightarrow L(M')$ is finite $\Rightarrow L(M') \neq \Sigma$.

NAME: \text{Give s: Is } L(M) \text{ infinite?}

Yes: $\text{LIN} \leq_{m} \text{ INF}$, the "Index-Set" of the class of infinite c.e. languages.
Definition: For any subclass C of the r.e. languages, its index set is $I_C = \{ \langle M \rangle : L(M) \in C \}$.

As a problem, it is: $\text{INST: A TM } M \quad \text{Ques: Is } L(M) \text{ in } C$.

Examples:
- ETM is the index set $I_{\text{ETM}} = \{ \langle M \rangle : L(M) \neq \emptyset \} = I_{\{ \emptyset \}^c}$.
- $\text{NE} = \{ \langle M \rangle : L(M) \neq \emptyset \} = I_{\{ \emptyset \}^c} \cap \text{TM}$.
- $\text{ALL} = I_{\Sigma^*}$.
- $\text{IN} = \{ \langle M \rangle : L(M) \text{ is infinite} \}$.
- $\text{REC} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ which includes ETM.
- $\text{IP} = \{ \langle M \rangle : L(M) \in \mathbb{P} \}$ irrespective of whether M is TMs that run in polynomial time.

What is I_\emptyset, the index set of the empty class?
What is I_{REC}, the index set of the class of all r.e. languages?

$I_{\text{REC}} = \mathbb{N} = \Sigma^*$. So I_\emptyset is the complement of Σ^*, i.e., $I_\emptyset = \emptyset$.

Rice's Theorem: Those are the only two decidable index sets.

"Moral" (in the version extended to classes of functions): Every nontrivial extensional property of programs is undecidable.
Proof: Given \(L \) when \(C \neq \mathcal{O} \) and \(C \neq \mathcal{RE} \), so there is a c.e. language \(A \) such that either:

\(\text{a) } \emptyset \in \mathcal{C}, \ A \notin \mathcal{C} \) \hspace{1cm} (\ast)

or \(\text{b) } A \in \mathcal{C}, \ \emptyset \notin \mathcal{C} \).

Take an \(M_A \) s.t. \(L(M_A) = A \).

Build \((M, w) C \rightarrow M' \rightarrow X \)

\[\text{Sim} \ M(w) \]

if and when it accepts

\[\text{Run} \ M_A(X) \] if \(M_A \) does.

In case (\(\ast \)):

\((M, w) \in \mathcal{A}_M \rightarrow L(M') = A \Rightarrow M' \notin \mathcal{C} \) \hspace{1cm} \text{\(A_m \notin \mathcal{C} \)}

\((M, w) \notin \mathcal{A}_M \rightarrow L(M') = \emptyset \Rightarrow M' \in \mathcal{C} \)

Either way, \(\mathcal{C} \) is undecidable. \(\Box \)

Example: \(C = \mathcal{REG} \), case (\(\ast \)) applies with \(A = \{ \text{palindromes} \} \), so \(\mathcal{REG} \) is undecidable.

Added:

I could have worded this as, “Given any class \(C \), first suppose (\(\ast \)) that the empty language \(\emptyset \) is in \(C \). E.g., \(C \) is the class of regular languages. Then by \(C \neq \mathcal{RE} \), there is some c.e. language \(A \) that is not in \(C \). Take an \(M_A \) s.t. \(L(M_A) = \emptyset \). e.g., \(A = \{ \text{palindromes} \} \). If (\(\ast \)) \(\emptyset \) is not in \(C \), then by \(C \neq \mathcal{RE} \) we can take some \(A \) that is in \(C \), take \(M_A \) s.t. \(L(M_A) = A \), and continue as above.