SAT is NP-complete, i.e. $\text{SAT} \in \text{NP}$ (already seen) and for all $A \in \text{NP}$, $A \leq^p_m \text{SAT}$.
[We will prove a reduction to a subcase of SAT]

Proof: By $A \in \text{NP}$, there is a polynomial $p(n)$ and a single-tape TM $M(x, t)$ that computes a witness predicate $R(x, t)$ with $|t| \leq p(|x|)$.

From Monday, we saw that $R(x, t)$ can be the computation checking predicate up to $p(n)$ tape cells; it might use in full stack.

The possible empty cells of any 6-cell
"Lozenge" can be written as a function depending only on S of M_x.
It determines the middle bottom cell as a function of the three above.

Each lozenge has the same function Δ of six characters (3 inputs, 1 output) over $\Sigma = \{0, 1\}$.

We can re-code these over binary and write the while Δ function as a Boolean function, using NAND gates only. $\therefore M_x$ can be simulated by $p(n) \times |\Sigma|^{p(n)}$ sized circuits. (Can get $O(p(n)) \log p(n)$...
We have abstracted this to a circuit C_n s.t. \[x \in \{0, 1\} \implies \exists y, z \in \{0, 1\} \implies C_n(x, y, z) = 1 \]

\[x_i \rightarrow \overline{x_i} \rightarrow x_i \rightarrow y_i \rightarrow \overline{y_i} \rightarrow y_i \rightarrow \cdots \rightarrow y_{p(n)} \]

- We can stamp out C_n in $O(p(n))$ time.
- Gate g functions correctly on bits u, v, w, i.e., $u \oplus v \oplus w = 1$ if and only if ϕ_g is made true, where

\[\phi_g = (uvw) \land (vrvw) \land (\overline{u}rv\overline{w}) \]

- One part that depends on n is 1×1
- Singleton clauses (x_i) or $(\overline{x_i})$ to set those vars to the actual bit x_i. E.g.,

\[x = 011 : (\overline{x_1}) \land (x_2) \land (x_3) \]

- wires u, v, w.

Thus ϕ_X is computed by an $O(p(n)^2)$ time function of X, and for all $x \in \Sigma^*$:

\[x \in A \iff (\exists y, z \in \{0, 1\} \implies R(x, y, z) \land (\exists y, z \in \{0, 1\} \implies C_n(x, y, z) = 1 \iff \exists (y, w) \phi_x (x, y, w) = 1 \iff \phi_x \in SAT. \]

Observe: Every clause is at most 3 literals, all of the same sign, and ϕ_x is a conjunction of those clauses. 3SAT.