NP-completeness via \leq^p_m reduction from 3SAT. Example:

INDEPENDENT SET

INST: An undirected graph G, and a number $K \leq |V| = n$.

QUEST: Is there a set $S \subseteq V$, $|S| \geq K$ such that no two nodes in S are adjacent? (Extra: If yes, output optimal S and K.

Example: Graph $G = \{1, 2, 3, 4, 5\}$

$K = 3$, answer is no: $S = \{3, 1, 2\}$, $|S| = 3$.

$K = 2$, answer is yes: $S = \{1, 2\}$ or $S = \{1, 5\}$.

$K = 1$, yes but not optimal (don't use node 3).

Theorem: INDEPENDENT SET is NP-complete: In NP and 3SAT \leq^p_m INDEPENDENT SET.

Proof: "In NP": Given G, if $(G, K) \in$ INDEPENDENT SET then we can guess $S \subseteq V$.

$S \subseteq V$ means $|S| \leq |V| = n$ and length wise, $|S| \approx n \log n$.

Verif.: Check $(\forall u, v \in S, u \neq v) (u, v) \notin E$. \therefore poly in $n \leq |G|$.

How many pairs to check? $(\binom{|S|}{2}) \leq (\frac{n}{2})^2 = O(n^2)$, polynomial in n.

INDEPENDENT SET $\in NP$.

Let $S \subseteq V$ with $|S| = K$. Then $\exists \phi \in \text{3SAT}$ with $\phi(S, K)$.

This is $\exists \phi \in \text{3SAT}$. \therefore INDEPENDENT SET \leq^p_m 3SAT.

Why can't we try all S-es? There are $2^{|V|}$ sub-sets $S \subseteq V$.

Hence trying them all leads to exponential time: $K = \frac{n}{2}$ very typical.

3SAT \leq^p_m INDEPENDENT SET. Let any $\phi = C_1 \land C_2 \land \ldots \land C_m$ be given.

$\phi \iff \phi_1 \lor \phi_2 \lor \ldots \lor \phi_m$ where

$\phi_i = \phi(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$. \[\text{Let } m = \# \text{ clauses, each with (up to) 3 variables. } n = \# V.\]
Construction: Show how to build G_{Φ} and define K_{Φ} from Φ.

Complexity: Say why the building is easy (often streamable).

Correctness: Show that if satisfiable $\iff G$ has an ind-set S of size K_{Φ}.

If not satisfiable \iff all ind sets in G have size $< K_{\Phi}$.

Idea: Set up a correspondence (not necessarily 1-1) between

sat. assgns $\langle a_1, \ldots, a_n \rangle \leftrightarrow \Phi$ and solutions S to G_{Φ} for a critical value of K_{Φ}.

"Variable Ladder and Clause Gadgets"

\[X_1 \quad X_2 \quad X_3 \quad \ldots \quad X_n \]

Example: $n=3$

K_{Φ} = Idea: Put in "crossing edges" from clause gadget to rungs so that S can have size K_{Φ} once from only if the choices of rung variables induce a sat. assgnt.

and many

Eg. choices induce the assignment (0,0,0) which satisfies Φ via $\overline{X_3}$ in C_1, $\overline{X_2}$ in C_2.

choices include $X_1 = 1$, whereas $X_2 = 0$, $X_3 = 1$ does not matter: Φ satisfied via X_1 in both clause

Blue lines are the "crossing edges" which depend on details of the particular Φ.

The green "ladder edges" and "gadget edges" only depend on n and m from Φ.

They define $K_{\Phi} = n + m$ regardless of details of Φ as the goal value. Next time: Formal details...