Log Space Reducibility \(\leq \log_m p \) is finer than \(\leq_p \) since L \subseteq P.

Log-Space Computable Fns

Technical Point: If \(M \) and \(g \) belong to FL (function logspace) then so does \(g \circ f \).

Issue: If \(M \) computes \(y = f(x) \) and \(M' \) computes \(z = g(y) \), we can chain \(M \) and \(M' \) together, but we can't store \(y \) within the \(O(\log |x|) \) space.

- If the input tapes are right-only ("One-Way Logspace": L_1, FL_1) then the problem goes away: \(M' \) reads a bit of \(y \) as soon as \(M(x) \) outputs it, and since there is no re-reading of input, the bits of \(y \) need not be stored.

- If \(M \) is allowed a finite number \(r \) of left-to-right passes over \(x \), and \(M' \) is allowed a finite number \(s \) of left-to-right passes over \(y \), then \(z = g(y) = g(f(x)) \) can be computed with \(r \cdot s \) passes over \(x \), so OK.

"Finite Passes and (\log n)^{O(1)} Space" is likewise closed under composition. This is a popular definition of Streaming Algorithms.

General Case of Arbitrary Re-Reads: Instead of storing \(y \), the combined machine \(M'' \) stores the location \(i \) of the input head of \(M' \) on bit \(i \) of \(y \).

Whenever \(M' \) wants to move its input head left, \(M \) restarts from the beginning until it outputs bit \(i-1 \) of \(y \), which is stored.

If \(M' \) moves to \(i+1 \), it takes however long to output bit \(i+1 \). All the \(\log \) overhead is inefficient for \(y \) but stays within \(O(\log |x|) \) space.
Therefore \(\leq_m \) reduction are transitive: \(A \leq_m B \land B \leq_m C \Rightarrow A \leq_m C \).

In fact, every \(\leq_m \) and \(\leq^p_m \) reduction shown in the course has actually been a \(\leq_m \log \) reduction or even the sharper one-pass streaming kind.

Hallmarks of a \(\leq_m \log \) Reduction:

- The objects it constructs have an explicit formula. E.g.:
 \[
 G_\Phi = (V_\Phi, E_\Phi), \quad V_\Phi = \{ x_i; x_i: 1 \leq i \leq n \} \cup \{ x_i, \overline{x_i}; \text{ variable } x_i \text{ is in clause } C_i \}; \\
 E_\Phi = \{ \ldots \} \cup \{ \ldots \} \quad \text{etc. possibly negated.}
 \]

- The individual items used in building \(G_\Phi \) etc. are finite clumps of \(O(\log n) \)-sized labels such as variable numbers \(i \), clause \#s \(s \).

- (In consequence), local features of the target object \(G_\Phi \) (note) depend only on local features of the source object (e.g. \(G_\Phi \)) or on simple global connections—like copying \(\langle m, w \rangle \) or hooking up the \(B \) and \(C \) nodes in the 3SAT \(\leq_m \) \(G_3 \) example.

Graph Accessibility Problem (GAP):

- **INST:** A directed graph \(G \), nodes \(s \) \& \(t \in V(G) \).
- **QUES:** Is there a path from \(s \) to \(t \) in \(G \)?

GAP \(\in \text{NL} \): A log-space NTM can guess the path and verify it while storing only the current node.

A \(\in \text{NL} \Rightarrow A \leq_m \log \) GAP: Given an NTM \(N_A \) running in \(C \)-log space and build the ID graph \(G_x \) from Monday's lecture. Every ID \(\langle g, w, i_1, \ldots, i_k \rangle \) has size \(\leq \log |Q| + \log n + k \log n \approx \log |Q| \) \(\log \) size. Hence using \(\log n \)-space for any pair \((S, I) \), our reduction function can cycle through all pairs and "stream out" those pairs giving \(I \downarrow_{N_A} J \) which are the edges of \(G_x \).

And we have \(S = I_0(s) = \langle s, \epsilon, 1-1 \rangle \) as the starting ID and \(t = I_f = \langle q_{final}, 1-1 \rangle \) as a unique accepting ID we can arrange by "good housekeeping." So \(x \in A \iff (G_x,s,t) \in C(A). \)