The missing word at upper left is “Recap.”

And for the far-right part of the whiteboard:
Recitation part:
1. \equiv BFS
 - Traversing the graph: $V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \ldots$

2. \equiv GSC
 - Not clear why

3. $\equiv G = G(x_1, x_2) \iff \left(f: \{1, 2, 3\} \rightarrow \{1, 2, 3\} \right)$
 - Consider in a string of length n, and $x_i \in \{0, 1\}$.

 So this is an NP class.

 Suppose we use DNF instead of CNF.

 3. Suppose we have a DFA (Deterministic Finite Automaton).

 - $\delta(x, a) = \{ \delta(x, a_1), \delta(x, a_2) \} \cup \{ \delta(x, a_3), \delta(x, a_4) \}$

 - $\delta(x, a) = \{ \delta(x, a_1) \} \cup \{ \delta(x, a_2) \} \cup \{ \delta(x, a_3) \} \cup \{ \delta(x, a_4) \}$

 - Now, $\delta(x, a) = \{ \delta(x, a_1) \} \cup \{ \delta(x, a_2) \} \cup \{ \delta(x, a_3) \} \cup \{ \delta(x, a_4) \}$

4. \equiv PSPACE
 - Works with NEX
 - In place of PSPACE.

5. Q3: What does it mean to move x to y?

So that an assignment α satisfies $\phi(x) \iff \phi(y)$

Is the α satisfies the original ϕ except that

- α does not flip the value of x_0

- α still has the same order of $x_i - x_j$?

Key:
1. Compute $V(\alpha(y))$ to reject when $\alpha(y)$ holds rather than reject. Then the original condition will have $\alpha(y) = \alpha$, or flipping all pairs $x_i = y_i$.
2. Compute $V(\alpha(x))$ to reject $\alpha(x)$, or flip bits to y_i.
3. CRT $X_{\alpha} = 0$, instead of using X as a single class, use \overline{X}.