As a permutation, TOF = (7 8). As a mapping of the standard basis it is: ...

Then follows the part to its right in black. The red in the middle notes that to represent multiple wires w out of an input gate x_i, we need to make the ancilla qubit for w have the same value of x_i, so we initialize w to 0 not 1 and make it the target of a CNOT with x_i as source. Basis inputs can be cloned.
I intended to finish by stating the *amplification theorem* for BQP and BPP both: If you have a language \(L \) that belongs to BQP (respectively, BPP) via a predicate \(R(x,y) \) where

\[
\begin{align*}
X \in L & \Rightarrow \Pr_y[R(x,y) > \frac{2}{3}] \\
X \notin L & \Rightarrow \Pr_y[R(x,y) < \frac{2}{3}],
\end{align*}
\]

then for any \(m \) one can define \(R'(x,Y) \) where \(Y \) is a tuple of \(m \) strings to hold if the majority of \(R(x,y_j) \) values hold, \(1 \leq j \leq m \). This gives

\[
\begin{align*}
X \in L & \Rightarrow \Pr_y[R(x,y) > 1 - \frac{1}{g(m)}] \\
X \notin L & \Rightarrow \Pr_y[R(x,y) < \frac{1}{g(m)}],
\end{align*}
\]

Where the function \(g(m) \) is exponential in \(m \). In particular, with \(m = O(\log n) \), one can get “\(> 1 - 1/3n \)” and “\(\leq 1/3n \)” in the two branches as stated in problem (1) of HW6. You can get “\(> 1 - 1/6n \)” and “\(< 1/6n \)” if you want, or “\(> 1 - 1/n^3 \)” vs. “\(< 1/n^3 \)” or whatever. This is called “amplification by majority vote” and is a powerful technique.