
CSE610: Quantum Key Distribution and Communication
 
The task is for two communicating parties, "Alice" and "Bob", to possess the same long random binary 
string  without any other party knowing .  Once they have , they can communicate messages  up 𝜌 𝜌 𝜌 x

to the length  of  with perfect secrecy via the classical one-time pad protocol:N 𝜌
 

• Alice sends  to Bob.x' =  x⊕ 𝜌

• Bob, on receiving a string ' from Alice computes .  y y =  y'⊕ 𝜌

• Presuming he and Alice stay "on the same page" of , and that no mishaps befell the 
transmitted 

𝜌

bits, it follows that , so Bob can read what Alice sent.y = x

• An eavesdropper can read , but because  stays unknown and is completely random, having x' 𝜌

 confers no information about .x' x
 
A big cost of this is that  can be used only once: if you also intercept  then 𝜌 z' =  z⊕ 𝜌

, so you have the difference of two well-formed plaintexts, from which x'⊕ z' =  x⊕ 𝜌⊕ z⊕ 𝜌 =  x⊕ z
much information about them can be inferred.  So the one-time pad requires economical production of 
large numbers of random bits on demand.  
 
A point of this to bear in mind is that the need for  presumes that Alice and Bob do not already have a 𝜌
secure channel for communication.  They have only insecure channels that may be presumed no 
different from public reveal.  The idea can work for multiple parties, which is why it is called quantum 
key distribution (QKD), but they must be told how many bits have been used by a communication 
involving only some of them in order to stay synchronized.
 
A third point is that communicating a random  is tantamount to communicating a message .  Thus 
the 

𝜌 x

task does not need to be immediately about communicating willful messages.  It is also possible that  𝜌
does not need to be received exactly.  Plaintext messages  can be pre-processed by error-correcting x

codes (ECCs) as  so that damage to a moderately small proportion of bits still allows decoding .  z x
Whether quantum ECCs can help with this part is getting ahead of the story.  We will begin by 
supposing that Alice and Bob want to agree on  exactly.𝜌
 
A fourth point is that any sub-sequence of a random  is still random.  Even if three-fourths of  gets 𝜌 𝜌
wiped out, including (say) the whole first half, the leftover will still serve.  This is an advantage over 
cases with ECCs on structured messages.  
 
 
Entangle or Not?
 
In a perfect world, Alice would have a simple quantum solution.  She would entangle pairs  +00 11
and send the second qubit to Bob, which they would both measure in the standard basis.  By the 
postulates of quantum mechanics, Alice's results  will be perfectly random, and by entanglement, Bob 𝜌

will get the same results. 
 

 

 



The zeroth problem is that willful entanglement is still relatively expensive.  The first problem is that an 
eavesdropper, "Eve", can intercept and measure the qubits sent to Bob before sending them on.  
 

• Her measuring them is the same to Alice as if Bob did.
• Bob will get Eve's measurement results.  He could equally have gotten them himself, so he 

cannot tell the difference either.
• This is true even if Bob measures in a different basis from Eve.  

 
Entanglement is indeed the basis of the second QKD proposal, by Artur Ekert of Oxford.  But let's see 
the first, by Charles Bennett and Gilles Brassard in 1979--1984 (the BB84 protocol).  
 
 
BB84
 
The nub is that if Alice sends a qubit as  but Bob measures it as , then something affected it en 0 1

route.  What could have happened was an intermediary measuring it in the  basis and getting ,+ -

either of those two results, whereupon Bob would have a 50-50 chance of getting  from his 1

measurement.  Likewise, if Alice sends  but Bob measures , then their privacy has been broken-+ -
--though maybe by Mother Nature; i.e., not necessarily willfully.
 
The second "Quantum Fact" is that if the intermediary "Eve" measures in the  basis, learning ,0 1
Alice's bit, then Bob will get the same bit but have no way to tell it has been read.  Eve's measurement 
"collapses" what was already a basis state to the same basis state.  This goes hand-in-hand with their 
being no bar on copying an unknown qubit value when it is known in advance to belong to a given 
orthonormal basis.  
 
This raises the idea of leaving both Bob and Eve guessing as to which basis to measure in.  When (a) 
Bob guesses right, (b) Eve guesses wrong, and (c) Eve's measurement flips the bit, Eve can be caught-
--if (d), this is a qubit that Bob and Alice "sacrifice" by publicly communicating their basis choices.  Each 
of (a,b,c,d) is a potential halving of the rate of the protocol, meaning the proportion of valid bits of the 
eventual shared  to the total number  of qubits sent (by Alice).  𝜌 N
 
Alice and Bob separately need a cost-effective way to generate truly-random bits to begin with.  Each 
can do private measurements of qubits in the  state to get their private random strings.  Tis is not +

part of the task, which is for Alice and Bob to agree on the same random string .  There are actually 𝜌
some non-trivial issues with getting truly-random bits that could be a separate topic, but we will 
presume this poses no difficulty.  
 
Before the protocol begins, Alice and Bob agree on some matters of procedure, most particularly:

• which bits they will "sacrifice" as a test set  on which to catch Eve.  The rule for  does not T T

need to be kept secret; it can be "every odd bit of the good indices" (numbering bits from ).0

• what proportion  of errors/eavesdrops (i.e., flipped bits in ) they will tolerate.  Maybe .e T e = 0
Here is the BB84 protocol:

 

 



 
1. Alice generates random binary strings  and .r ∈ 0, 1{ }N s ∈ , /{ | }N

2. For  to :i = 0 N- 1

(a) if  then Alice sends a qubit  if ;  if .s =i | q =i 0 r = 0i q =i 1 r = 1i

(b) if  then Alice sends  if  and  if .s = /i q =i + r = 0i q =i - r = 1i

3. Bob independently generates a random string  (this can be before or after Alice s' ∈ |, /{ }N

sends the qubits---either way, Eve cannot know  or  at step 2).  s s'

4. For  to :i = 0 N- 1

(a) if  then Bob measures  in the  basis, recording  for the outcome s' =i | qi ,0 1 r' = 0i

 and  for the outcome .0 r' = 1i 1

(b) if  then Bob measures  in the  basis, recording  for the outcome s' = /i qi ,+ - r' = 0i

 and  for the outcome .+ r' = 1i -

5. Alice and Bob publicly reveal their strings  and .  The set  of good indices are those  for s s' I i

which , that is, when Bob guessed to measure in the same basis Alice used.s i = s' i[ ] [ ]

6. Alice and Bob also reveal  and  for .  ri r'i i ∈ I∩T

7. If there are at most  indices  such that , then they accept the results.  Else, e i ∈ I∩T r ≠ r'i i

they re-run the whole protocol from the start to try again.
 
Here is an example of a possible run and outcome---assuming no errors caused by Eve:
 

s | | / / / | | / | / / |
r 0 1 1 0 1 0 1 1 0 0 1 1
q 0 1 - + - 0 1 - 0 + - 1

Eve?             

s' / | | / | | | / / / / |
T    *   *   *  *
r'  1  0  0 1 1  0 1 1
𝜌  1    0  1   1  

 
Alice and Bob were somewhat lucky to get a shared  of length  rather than  from .  Mind 𝜌 4 3 N = 12

you, if one of the four *ed bits in  had been flipped, they would figure that since they have only a 1-in-r'
4 chance of catching Eve on any one bit, then plausibly all four test bits are known to Eve, and hence 
would ear all bits of  were untrustable as well.𝜌
 
If Alice and Bob accept with , then they can be confident that there are no errors on  either.  e = 0 I ⧵T

The final output  then is the substrings formed by the bits  (same as ) for .  If they allow 𝜌 ri r'i i ∈ I ⧵T

, then they can use randomness extraction to arrive at a shorter string  that is still random and e > 0 𝜌

with high probability reduces Eve's knowledge of  from  bits to nearly zero bits.  (A simpler way, if 𝜌 e

they don't mind the final  having expected length  rather than length proportional to , is 𝜌 𝛩 N / N( log ) N

to apply the decoding function of a -error correcting code to the good sequence, where k

.  This would subtract out Eve's expected knowledge of about  bits of the good sequence, k = 4e|I ⧵T| k

assuming the proportion of eavesdrops on  is similar to that on .  The factor of  is because I ⧵T I∩T 4

 

 



Eve gets caught only one-fourth the time on the indices in , when she guesses the wrong basis and I

the bit happens to flip.  Note that  is random and unknowable to Eve at the time she could act, I

because it depends on how  relates to , and its subsequences of even and odd indices were likewise s' s
unknowable.)
 
Presuming success is achieved with  on  and , the expected length of  is .  e = 0 T |T| = |I| / 2 𝜌 0.25N

The factor on  is the rate.  This is because half the indices expect to be good, and we are sacrificing N

half for the test set.  With smaller choices of , rates over 27% have been reported.  If  is T e = 1 / 32

tolerated, then the rate is knocked down to  at most when  is half of .1 / 8 T I
 
B92
 
This is the simplification that does away with Alice's random  and has her send  when  and s 0 r = 0i

 when  (or she could use  for that instead, as long as Bob knows which one she is using). - r = 1i +
 Bob still has to guess which basis to measure each transmitted qubit in, and of course, what he gets 
depends on his choice of basis, which is according to his  random string.s'
 

• If  and he gets , he knows that Alice could not have sent  in a clean run, so he s' = |i 1 0

figures Alice sent  and records .- r' = 1i

• If  and he gets , then a clean send could have been  or , so Bob punts.s' = |i 0 0 -

• If and Bob gets , then Alice could not have cleanly sent , so Bob figures it was 
 

s' = /i + -

0

and records .r' = 0i

• If and Bob gets , then it could have been  from Alice as well, so Bob punts.s' = /i - 0
 
Thus Bob records Alice's bit only in the 25% chance that he guesses the "wrong" basis and yet the bit 
still goes as Alice intended.  That caps the rate at  even before we bring Eve into the picture.  One 0.25

good thing is that Bob's revealing the set  of indices on which he recorded bits does not give useful I
information to Eve in retrospect.  
 
Unfortunately, the indices on which Bob punts cannot be used to catch Eve either.  Note that Eve can 
never be caught if she guesses Alice sent  and uses the standard basis, or when she guesses Alice 0

sent  and so uses the  basis.  She will get the same as what Alice sent and not be detectable at - X

all.  So when Alice sends , the only way Eve can be caught is when she uses the  basis, Bob uses 0 X

the standard basis, and Bob gets , which he records as  giving .  Bob and Alice again have to 1 - 1
sacrifice some of their good indices to see Eve's activity.
 
The point of the BB92 protocol is only needing two broadcast states, but it pays a penalty in rate and 
security---regarding the latter, it takes more test trials to catch Eve with high probability.  Going the 
other way, there are enhancements of BB84 that use more bases, in particular, using the Pauli-  basis Y

 to boot, where   and  (both divided by root- , of ,i -i = + ii 0 1  = - i-i 0 1 2

course).  These achieve somewhat higher rate and frequency of catching eavesdrops.
 

 

 



 
E91
 
The 1991 protocol by Oxford's Artur Ekert mixes the CHSH game---where Alice and Bob always use 
different bases---with cases where they use the same basis.  Given a pair of entangled qubits, they 
must use the same basis in order to guarantee that the entanglement gives them the same result on 
the measurement.  But they need to vary their bases in order to prevent Eve from doing the same 
measurements.  
 
Alice and Bob need a source of entangled qubits.  One fact to note is that
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Thus it does not matter whether the source is considered to give "entangled Bell pairs" or "entangled  X
pairs"---whichever basis Alice and Bob agree on, they will get the same results.  It also does not matter 
whether Alice knows the qubit values before Bob does: whereas a setup with "referee Ralph" was 
needed to close potential "loopholes" in a setting where Alice and Bob are being challenged on whether 
they win fairly, here Alice and Bob will do a cooperative analysis of cases where they don't win because 
Eve plays unfairly.  
 
One nice feature is that the cases where Alice and Bob "punt" are ones where they can catch Eve. The 
good cases where they record bits of  happen only  of the time, though---at least in the 𝜌 2 / 9 <  1 / 4
simple form of E91 that is invariably described.  To see the design point, first recall the four possible 
basis choices in the CHSH game:

We can identify the basis choice with the direction of the "Y".  Alice and Bob will each have three 
possible choices of basis rather than two, so their random strings  will be ternary rather than binary.  s, s'

We label Alice's options  and Bob's options  so it is easier to tell which ones coincide.  Alice 0, 1, 2 1, 2, 3
chooses E, ENE, or NE; Bob ENE, NE, or NNE:
 

 

 



There is no separate random string  because the measurements create it.  Here is the protocol in full:r
 

1. Alice and Bob generate random strings  and , respectively.s ∈ 0, 1, 2{ }N s' ∈ 1, 2, 3{ }N

2. As entangled qubit pairs are sent to each in timesteps , Alice measures hers i = 0, 1, … , N- 1

in the basis chosen by , Bob in the basis chosen by .si s'i
3. Alice and Bob then reveal  and .  For each :s s' i

(a) If  or  then  and each records  if the "Y" outcome s = s' = 1i i s = s' = 2i i i ∈ I r = 0i

occurred, else .r = 1i

(b) If  and  then we have a play of the CHSH game, and they put  into s ∈ 0, 2i { } s' ∈ 1, 3i { } i

the test set  for further analysis.T

(c) The combination ,  can also be treated as a play of CHSH with the roles of s = 1i s' = 2i

Alice and Bob reversed, or just discarded.  The remaining two outcomes,  s = 0, s' = 2i i

and , are always discarded---for reasons similar to why different-basis cases s = 1, s' = 3i i

are useless in BB84.
4. An  is a "win" if either  and Alice and Bob got their same Y/N outcome, or i ∈ T |s - s' | = 1i i

, , and they got opposite outcomes.  They accept if the proportion  of wins is s = 0i s' = 3i w
sufficiently close to 85%, but reject and try again if it is too close to 75%.

5. Unlike in BB84 or B92, further refinement of the recorded string  over  is always mandatory r i ∈ I

before the final  is determined.𝜌
 
One major immediate difference from BB84 and BB92 is that there is no notion of a perfect outcome.  
Even without any "Eve" or little "dents and dings" by Mother Nature of the kind discussed further below, 
there is random variance in their actual CHSH game outcomes.  Their win percentage  can even be w
over 85% and yet they can't be sure that Eve didn't affect a bit or two; though they can be highly 
confident that Eve did not read more than a few.  The only hard-and-fast conclusion is that if Eve is 
active on every qubit then  will almost certainly be below or not much higher than 75% over a large w
number of trials.  (IMHO, sources such as these notes overstate the security.)  Hence the 
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https://ipgold.epfl.ch/_media/en/courses/2015-2016/traitementquantique/ekert.pdf


considerations for imperfect outcomes of BB84 come into play: apply techniques from error correcting 
codes, hashing, and/or randomness extraction.  The saving grace is the following:
 

Actions by Eve can often cause the optimal Alice-Bob strategy of the perfect CHSH game to 
become suboptimal even by classical standards---that is, win less than 75% of the time.

 
Recall that in the matrix of the classical game, not all strategies gave 75%---some like "NNYN" gave 
only 25%.  Incidentally, the test statistic is usually regarded as .  This comes from giving t = 4 2w- 1( )

 for a win and  for a loss, so the expectation for one play is , +1 -1 w ⋅ +1  +  1 -w ⋅ -1  =  2w- 1( ) ( ) ( )
and then the cases for the four possible Alice-Bob basis choices are added rather than averaged.  
Then 

 gives  as the negative-result end, and the high end  w = 0.75 t = 2 w = = 0.5 +cos2 𝜋

8

1

2 2

conveniently makes , so that .  The CHSH form of Bell's Inequality states 2w- 1 =
1

2
4w = 2 2

that any setting of the CHSH game that obeys local realism must give the expectation .  E t ≤ 2[ ]
 
Most sources (e.g. this and pages 41--44 of this) postulate that Eve intercepts the qubits from the 
source and measures each of them individually before transmitting them to Alice and Bob.  She can 
even measure them in different bases.  This gives Alice and Bob together a separable state . ⊗𝜙 𝜓

 If Eve measures just one qubit, then the state will have the form  where  is one of her ⊗𝜙 𝜙 𝜙

measurement outcomes.  Alice can then measure her  in any basis she pleases, but there will be 𝜙

no effect on Bob's separated copy of .  In any event, Eve's result places no constraint on what Bob 𝜙

sees even if he knows to use a basis  away from Alice's.  Their measurement results are local 22.5∘

coins, and however biased they might be, they confer no advantage in the CHSH game. 
 
We could therefore handwave-away the analysis, but then we won't see the surprise hinted by the 
statement in red.  If the entangled qubits initially go to Alice and she sends one to Bob, and Eve 
measures it first, then this is the same situation as above.  The dynamically interesting order of events 
is:
 

1. Alice transmits the entangled qubit to Bob and measures hers before anyone could measure the 
other.

2. Eve intercepts the transmitted qubit and measures it in her basis, passing on the result to Bob.
 
It is possible that by a principle of time-symmetry of measurements, this is equivalent to cases above 
where Eve measures first.  But It generates interesting analysis.  The point is that Eve has the same 
experience as Bob in the quantum CHSH game that is free of interference, but Bob becomes a "free 
agent" able to measure in a different basis from Eve.  The result of Alice's measurement affects Eve but 
not Bob.  
 
For simplicity we suppose Eve chooses one of the bases , , , or  involved in A0 A1 = B1 A2 = B2 B3

the protocol.  The analysis extends for any angle  with similar results.  Since the basis choices are all 𝜃

independent, we structure the analysis to fix Eve's choice and range over the options  for Alice A0, A2

and  for Bob that are in the test set .  When Alice measures first, her probabilities are 50% for B1, B3 T

 

 

https://ipgold.epfl.ch/_media/en/courses/2015-2016/traitementquantique/ekert.pdf
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/dissertations/2020/Yoann-Pietri-Dissertation.pdf


'Y', 50% for 'N' regardless of basis.  We compute  as usual and  by adding the expectations of  for w t +1

win,  for loss, over the four ways Alice and Bob can play.  Put , , -1 𝛼 =0 + 𝛼 =1 -

ENE, , , .𝛽 = e =0
i𝜋/8 𝛽 = e = 𝛽1

i5𝜋/8 ⟂

0 𝛾 = e0
i3𝜋/8 𝛾 = e = 𝛾1

-i𝜋/8 ⟂

0

 
:Eve = A0

• , ; agreement gives win: Alice = A0 Bob = B1

–  chance Alice gets ; Eve always gets ; chance Bob gets  to win.0.5 0 0 0.85... 𝛽0

–  chance Alice gets ; Eve always gets ; chance Bob gets  to win.0.5 1 1 0.85... 𝛽1

– Total , i.e., ; .0.85... E w = 0.5 + 1 /[ ] 8 E t = 1 /[ ] 2

• , ; disagreement gives win: Alice = A0 Bob = B3

–  chance Alice gets , Eve always gets , chance Bob gets  to win.0.5 0 0 0.85... 𝛾1

–  chance Alice gets , Eve always gets , chance Bob gets  to win.0.5 1 1 0.85... 𝛾0

– in general, Alice and Eve coinciding gives the same as the CHSH expectation; 

.E t = 1 /[ ] 2

• , ; agreement gives win: Alice = A2 Bob = B1

–  chance Alice gets ;0.5 +

*  chance Eve gets ; chance Bob gets  to agree with .0.5 0 0.85... 𝛽0 𝛼0

*  chance Eve gets ; chance Bob gets  to agree with .0.5 1 0.15... 𝛽0 𝛼0

–  chance Alice gets ; 0.5 -

*  chance Eve gets ; chance Bob gets  to agree with .0.5 0 0.15... 𝛽1 𝛼1

*  chance Eve gets ; chance Bob gets  to agree with .0.5 1 0.85... 𝛽1 𝛼1

– Thus this whole subcase is a 50-50 chance of win, so , .E w = 0.5[ ] E t = 0[ ]

• , ; agreement gives win: Alice = A2 Bob = B3

– Once again, whether Alice gets  or , Eve is 50-50 to get  or , and those flip + - 0 1

Bob's odds of agreement with Alice between  and , giving  and 0.15 0.85 E w = 0.5[ ]

 overall.E t = 0[ ]
 
Averaging  and adding up  across the four cases, we get the chance of a win as E w[ ] E t[ ]

 and .  So Eve choosing  + = 0.676776695...  <  0.75
1

2

1

2 8
E t = + + 0 + 0 =   <  2[ ]

1

2

1

2
2 A0

makes Alice and Bob fare worse than the classical bound.
 

:Eve = B1

• , ; agreement gives win: Alice = A0 Bob = B1

–  chance Alice gets ;  chance Eve gets ; then Bob gets  to win.0.5 0 0.85... 𝛽0 𝛽0

–  chance Alice gets ;  chance Eve gets ; then Bob gets  to win.0.5 1 0.85... 𝛽1 𝛽1

– Total , i.e., ; .0.85... E w = 0.5 + 1 /[ ] 8 E t = 1 /[ ] 2

• , ; disagreement gives win: Alice = A0 Bob = B3
– Whatever Alice's and Eve's outcome, Bob's outcome is 50-50 after Eve's measurement, so 

Alice and Bob are 50-50 to win:  , .E w = 0.5[ ] E t = 0[ ]

• , ; agreement gives win: Alice = A2 Bob = B1

 

 



–  chance Alice gets , i.e., ;0.5 + 𝛼0

*  chance Eve gets ; then Bob always gets  to agree with .0.85 𝛽0 𝛽0 𝛼0

*  chance Eve gets ; then Bob gets  to disagree with  and lose.0.15 𝛽1 𝛽1 𝛼0

–  chance Alice gets ; 0.5 -

*  chance Eve gets ; then Bob gets  to disagree with .0.15 𝛽0 𝛽0 𝛼1

*  chance Eve gets ; then Bob gets  to agree with .0.85 𝛽1 𝛽1 𝛼1

– Thus this whole subcase is an  chance of win, so , .85% E w = 0.85...[ ] E t = 1 /[ ] 2

• , ; agreement gives win: Alice = A2 Bob = B3
– Once again, whatever Alice's and Eve's outcome, Bob's outcome is 50-50 after Eve's 

measurement, so Alice and Bob are 50-50 to win:  , .E w = 0.5[ ] E t = 0[ ]
 

Thus in this case, too, we get   and E w  =[ ] + = 0.676776695...
1

2

1

2 8

.  The surprise is that these numbers are less than the values E t = + + 0 + 0 =  [ ]
1

2

1

2
2

 and  from the optimal classical strategy.  Thus Eve makes Alice and Bob's E w = 0.75[ ] E t = 2[ ]
optimal quantum strategy become a porr classical one.
 
There are cases  and .  How symmetrical are they with the two cases above?  You Eve = A2 Eve = B3
can try to work out as self-study that they give the same results.  
 
Another thing to note is that whenever Eve guesses the same basis as Alice or the same as Bob, the 
outcomes are the same as in the clean CHSH game.  Eve is caught on the plays when she differs from 
both Alice and Bob.  A second exercise is to see what happens if Eve chooses a basis with angle  
that 

𝜃

does not coincide with any of Alice and Bob's choices.
 
 
Eve or Mother Nature?
 
The Ekert 1991 protocol also (IMHO) affords the best situation in which to reckon the error effects 
covered in section 14.6 of LR chapter 14, especially depolarization.  [...to write...]

 

 


