
CSE610 Week 2: Hilbert Spaces, Tensor Products, and Operators
 
In a calculus or linear algebra course you have likely encountered the spaces  of points  in the R2 a, b( )

plane and  of points  or  in -dimensional space.  Then  means -dimensional R3 x, y, z( ) x , x , x( 1 2 3) 3 Rn n
real space, whether you called it a vector space or not.  Maybe you also covered the complex vector 
spaces  or specialized to vectors of rational numbers---which make the vector space .  When we Cn Qn

care more about the "space" aspect than the particular kind of numbers allowed, we use the umbrella 
term "Hilbert space" after the mathematician David Hilbert.  That term is often employed by physicists 
not only to avoid having to specify the dimension  but also to allow it to be infinite.  We, however, will n
stay in finite dimensional spaces and care a lot about what the dimension is.
 
The usual rule for the product of two vector spaces is to add the dimensions.  Thus a member of 

, which formally is an ordered pair like , is considered the same as the 5-tuple R  ×  R2 3 a, b , x, y, z(( ) ( ))

, which we could re-label as .  Soa, b, x, y, z( ) x , x , x , x , x( 1 2 3 4 5)

 
.R  ×  R  =  R2 3 5

 
The tensor product, however, multiplies the dimensions.   When defined between our vectors  a, b( )

and , it doesn't just ram them together.  Instead it combines a copy of the second vector into x, y, z( )

each part of the first vector.  In symbols:
 

.a, b( ) ⊗ x, y, z  =  a ⋅ x, y, z ,  b ⋅ x, y, z  =  ax, ay, az, bx, by, bz( ) ( ( ) ( )) ( )

 
The vectors we get have dimension 6 not 5.  We will see that not every vector in the target space, here 

, arises as a tensor product.  But if we close out  under linear combinations, then we do R6 R  ⊗  R2 3

get all of .R6

 
What does tensor product do?  We feel again that good intuition comes by thinking about abstract 
attributes first, numbers later.  Let us make the card suits into the abstract "attribute vector"
 

 u =  ♣, ♢,♡, ♠ .( )

 
And the ranks of cards becomes the attribute vector
 

.v =  2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A( )

 
Then the tensor product---in the order  (it's not commutative)---isu ⊗  v

 
.w =  ♣2,♣3, … ,♣K,♣A, ♢2, ♢3, … , ♢A,♡2, … ,♡A, ♠2, … , ♠A( )

 
This sorts the deck by suits.  If we tensored the other way around, we'd get
 

,v ⊗  u =  2♣, 2♢, 2♡, 2♠, 3♣, 3♢, 3♡, 3♠, 4♣, … , 4♠, 5♣, … , … , A♣, A♢, A♡, A♠( )

 

 



 
which sorts the deck by ranks instead.  Always the second vector gets "copied inner" while the first 
vector is "outer."  The ordinary product would have just rammed  after  to give a vector of 17 items, v u
four of type Suit and thirteen of type Rank.  This is inhomogeneous mishmash---like "not playing with 
a full deck" as we say.  Whereas, in either order, the tensor product creates a homogeneous length-52 
vector of type "Suit and Rank."  (Between Suit and Rank, the order might or might not matter.)  
 
Now let's see how this works numerically.  The vector  is the standard basis vector u = 0, 1, 0, 0[ ]T

corresponding to "diamonds" in our scheme for suits.  For ranks, the seven is indexed by
 

.v =  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0[ ]

 
Then
 

u⊗ v =  0 ⋅ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ,  1 ⋅ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 , … , 0[ [ ] [ ] ]T

           =  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, … .0 .[ ]T

 
The single  corresponds to the position of the  in the abstract indexing scheme.  So we write:1 ♢7

 
u⊗ v =  =  .♢7 ♢ 7

 
Thus the tensor product of two standard basis vectors gives us a standard basis vector in the larger 
space.  Indeed, we can get the entire standard basis of 52 vectors this way.  We've also started writing 
the "invisible dot" product of kets---which are in quantum coordinates---to stand for the tensor product in 
the underlying coordinates.
 
Suppose we next take the tensor product of  with itself.  Doing this with the attribute vectors, we getw
 

.w⊗w =  ♣2♣2,♣2♣3,♣2♣4, … ,♣2♣A,♣2♢2, … ,♣2♠A,  ♣3♣2,♣3♣3,  … , … , ♠A♠A( )

 
What does this represent?  It conveys the idea of playing two cards in sequence.  This allows them to 
be the same card---casinos usually play blackjack with eight decks shuffled together, for instance---but 
we will encounter algorithms whose point is either amplifying or eliminating such particular possibilities.  
The point is that tensor product is the underlying way of Nature simply doing a sequence, which means 
concatenating the symbolic representations.
 

Tensor Product = Simple Concatenation = Flow of Events.
 
This kind of representation is not just useful in quantum.  It underlies the idea of the "TensorFlow" API 
and library in machine learning.
 
The common example that matters most is when both spaces have dimension .  This case is innately 2

confusing because .  But hopefully the above will help us avoid confusion.2 + 2 =  2 ⋅ 2 =  22

 

 

https://en.wikipedia.org/wiki/TensorFlow


 
Two Qubits
 
In 4-space, the standard basis is given by the vectors:
 

.e  =  1, 0, 0, 0 ,  e  =  0, 1, 0, 0 ,  e  =  0, 0, 1, 0 ,  e  =  0, 0, 0, 10 ( ) 1 ( ) 2 ( ) 3 ( )

 
The indexing scheme for quantum coordinates changes the labels to come from  instead of 0, 1{ }2

from , using the canonical binary order .  Then we have:1, 2, 3, 4{ } 00, 01, 10, 11

 
.e  =  1, 0, 0, 0 ,  e  =  0, 1, 0, 0 ,  e  =  0, 0, 1, 0 ,  e  =  0, 0, 0, 100 ( ) 01 ( ) 10 ( ) 11 ( )

 
The big advantage is that these basis elements are all separable and the labels respect the tensor 
products involved:
 

 =  e  =  1, 0, 0, 0  =  1, 0 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  00 00 ( ) ( ) ( ) 0 0 0 0 0 0

 =  e  =  0, 1, 0, 0  =  1, 0 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  01 01 ( ) ( ) ( ) 0 1 0 1 0 1

 =  e  =  0, 0, 1, 0  =  0, 1 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  10 10 ( ) ( ) ( ) 1 0 1 0 1 0

 =  e  =  0, 0, 0, 1  =  0, 1 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  11 11 ( ) ( ) ( ) 1 1 1 1 1 1

 
It is OK to picture the tensoring with row vectors, but because humanity chose to write matrix-vector 
products as  rather than , they need to be treated as column vectors.  This will lead to cognitive Mv vM
dissonance when we read quantum circuits left-to-right but have to compose matrices right-to-left.  
 
We can also take tensor products of non-basis vectors of length 2.  Let's us try
 

 .u =   =   1, 1
 +  0 1

2
0.5 [ ]T

 
When we do , the first thing that happens is that the scalars in front multiply to get u⊗u

 as the multiplier on the whole thing.  The vector bodies combine as  ⋅   =  0.5 0.5
1

2

 
.1 ⋅ 1, 1 ,  1 ⋅ 1, 1  =  1, 1, 1, 1[ [ ] [ ]] [ ]

 
(Strictly speaking, we should do this as column vectors---maybe we'll show on the whiteboard---but it's 
always fine to do as row vectors and remember to transpose when needed at the end.)  So
 

.u⊗u =  , , ,
1

2

1

2

1

2

1

2

T

 
This is a unit vector.  We can do the same with
 

 

 



 

 v =   =  1, -1
 -  0 1

2
0.5[ ]T

 

We get   times   OK,  to be strict.  We v⊗ v =
1

2
1, -1 ⊗ 1, -1  =  1, -1, -1, 1 .[ ] [ ]

1

2
[ ] 1, -1, -1, 1

1

2
[ ]T

also get:
 

.u⊗ v =  1, -1, 1, -1
1

2
[ ]T

 

.v⊗u =  1, 1, -1, -1
1

2
[ ]T

 
Let's ignore the normalizing multipliers out front for the moment, since they do not matter to the ability 
to combine the vector bodies.  How about the simpler vector
 

w =  1, 0, 0, 1 ?[ ]

 

This equals , i.e., , ignoring the normalizing constant .  Can we get this as a e  +  e00 11 +00 11 0.5

tensor product of two vectors of length 2?
 
The answer is no.  We can prove it by representing the general 2-by-2 tensor product as
 

.a, b ⊗ c, d  =  ac, ad, bc, bd[ ] [ ] [ ]

 
To get  as the result, we need to solve the equations1, 0, 0, 1[ ]

 
, , , and .ac = 1 ad = 0 bc = 0 bd = 1

 
But  entails that either  is  or  is .  If , then  is impossible.  But if , then ad = 0 a 0 d 0 a = 0 ac = 1 d = 0

 is impossible. So there is no solution.bd = 1

 
Definition.  A vector is separable if it can be written as the tensor product of two smaller vectors.  
Otherwise---and especially when the vector represents a quantum state---we call it entangled.
 
 
To introduce some more quantum terminology, when a unit vector is not a basis vector, it is necessarily 
a linear combination of two or more basis vectors.  Then it is a superposition.  One of the amazing 
verities of physics is that we really can put particle-level sustems into superpositions and interact with 
them.  The math of how those interactions behave involves the kind of vectors we are already seeing.  
The vectors  and  above are superpositions.  When we re-interpret the attributes  and  as u v 0 1

 and , then  becomes the superpositiondead alive u

 

 



 

  
 +  dead alive

2
 
This is said to be the state of Schrödinger's Cat.  The philosophical issue is whether a macro-level 
being, not a particle, can be put into superposition.  (We will later argue the answer is "yes...but...") For 
now we prefer to take the simple realist view that a particle can have the state .  It is not a cat, but it u

has a pet-name, indeed a ket-name: .  The vector , with its prominent minus sign, is called .+ v -
 
 
[Lecture moved onto the whiteboard for showing examples of matrices and tensor products of matrices. 
 Here are the main definitions and several examples that were covered.]
 
 
Definition.  The conjugate transpose of an  matrix  is obtained by first transposing  to make m × n A A

the  matrix , and then taking the complex conjugate of every element.  We write  for the n × m AT A*

resulting  matrix.  (Many other sources write  instead.)n × m A†

 

Examples: , , .A =  
1 + i 1 - i

2 0
A  =  T 1 + i 2

1 - i 0
A  =  * 1 - i 2

1 + i 0

 

, ,  back again.Y =  
0 -i
i 0

Y  =  T 0 i
-i 0

Y  =   =  Y* 0 -i
i 0

 

,  because  is symmetric and has all-real entries.H =  
1

2

1 1

1 -1
H  =  H  =  HT *

H

 
This is our first look at the Hadamard matrix .  Note thatH

 

H  =   =   =  0
1

2

1 1

1 -1

1

0

1

2

1

1
+

 

.H  =   =   =   1
1

2

1 1

1 -1

0

1

1

2

1

-1
-

 
Thus  carries the standard basis onto the  basis.  It also maps that basis back to the H ,+ -

standard one, because , the  identity matrix.  A vector that looks superposed in the H  =  I2 2 × 2

standard basis can be simple in the changed basis.  Thus superposition is relative---"in the eye of the 
beholder" one might say---but in many concrete cases the observer is Nature.
 
The matrix  is one of four named after the quantum phsyicist Wolfgang Pauli.  The others are Y

 

 



, , and the identity .  Note that  and X =  
0 1

1 0
Z =  

1 0

0 -1
I X  =   =   =  0

0 1

1 0

1

0

0

1
1

similarly, .  Thus applying  negates the bit label of a standard basis state, and this X =1 0 X

functions just like the Boolean NOT operation.  Moreover,  is a permutation matrix.  In upcoming X

lectures we will show how permutation matrices used in quantum circuits confer exactly the power of 
classical Boolean circuit gates.  The extra quantum power starts coming in with the Hadamard gate.  
Now for two key definitions (which apply to any size matrices, not just ):2 × 2

 
Definition: A matrix  is unitary if .  A A A =  I*

 
[Added: Note, incidentally, that  must be invertible, and furthermoreA

.AA  =  AA AA  =  A A A A  =  AIA  =  AA  =  I* * -1 * -1 -1 -1

This also works vice-versa: if , then .  So an equivalent definition of unitary is that AA = I* A A = I*

.]AA  =  I*

 
 
Definition: A matrix  is Hermitian if .A A =  A*

 
The Pauli matrices are all both Hermitian and unitary.  So is the Hadamard matrix.  If we took away the 

factor , the resulting matrix  (which is often referred to as "the Hadamard natrix" in non-1

2

1 1

1 -1

quantum contexts) is Hermitian but not unitary.  The matrix  is unitary but not Hermitian.  S =  
1 0

0 i
In Part I of the text we toe the line of identifying unitary matrices with "legal quantum operations."  In 
Chapter 14 we tend toward the view that Hermitian operators are the real ones.  They restore a kind of 
left-right symmetry that we are about to abandon further here, and even when a Hermitian matrix has 
complex entries, it is "as good as real" in a sense we will cover later.  
 
Here I finished by defining the tensor product of matrices.
 
Definition.  The tensor product of an  matrix  and a  matrix , written , is the m × n A p × q B A⊗B

 matrix defined schematically in block form asmp × nq( ) ( )

 

.

a B1,1 a B1,2 … a B1,n

a B2,1 a B2,2 … a B2,n

⋮ ⋮ ⋱ ⋮

a Bm,1 a Bm,2 … a Bm,n

 
The definition of tensor product of vectors is just a special case of this:  for column vectors, n = q = 1

or  for row vectors.  Note that unlike the ordinary matrix product , which requires  m = p = 1 AB n = p

for the dimensions to match up and give an  result, the tensor product is defined regardless of m × q
what the dimensions are.

 

 


