
 
 
Mixed States
 

A pure state of  qubits is one denoted by a unit vector in .  A mixed state is any linear n C
2 n

combination of pure states by non-negative weights that sum to .  That is, a mixed state is a classical 1

probability distribution over pure states.  Whether "mixed state" includes pure states depends on 
context; one can say "properly mixed" to exclude pure states.
 
For one qubit, every properly mixed state maps to a point interior to the Bloch Sphere.  This also holds 
for generalizations of the Bloch Sphere to higher dimensions for more qubits.  So let us have pure 
states  and probabilities  summing to .  Then, … ,𝜙1 𝜙m p , … , p1 m 1

 
p  +  ⋯  +  p1 𝜙1 m 𝜙m

 
is the "standard" representation of the mixed state.  We will see momentarily that, like writing  to 𝜙k

begin with, it may presume more than we can directly sense.  A philosophical question that comes first 
is whether a mixed state is a "thing", or just our lack of full knowledge about the state.  I will try to 
convey a yes-and-no answer along lines of the parable of the blind men and the elephant: the mixed 
state is like a leg or trunk or tusk attached to a larger pure state, but can be operated on apart from it.
 
Both of these require taking a second look at measurements-in-any-basis.
 
 
General Measurements and Operators
 
The triple product of a row-vector , a matrix , and a column vector  is just .  We will care x A y xAy

about the case where  is the "bra" dual of .  Let's write , where  (kappa) could be any x y y = 𝜅 𝜅

meaningful label, and further put  where  and  are complex numbers such that = a, b𝜅 [ ]T a b

|a| + |b| = 1.2 2

 
Now when we measure in the standard basis, the probability of getting  as the outcome is , 0 |a|2

which we can also get as , and the probability of  is .  Note thata a* 1 b b = |b|* 2

 

, =  a , b ⋅ a, b  =  a , b ⋅ =  a a+ b b =  1𝜅 𝜅 * * [ ]T * * a
b

* *

 
but that didn't finally tell us about the individual outcomes---it just gave us , "big whoop".  Moreover, 1

the triple product with the identity  just comes out to the same thing.  But now let's try a 𝜅 I 𝜅
different triple product:
 

 

 



. =  a , b ⋅ ⋅ a, b  =  a , 0 ⋅ a, b  =  a a =  |a|𝜅
1 0

0 0
𝜅 * * 1 0

0 0
[ ]T * [ ]T * 2

 
Weird that the matrix in the middle is not invertible, but the end result was the probability of  0

separately.  And for the probability of , we get1

 

. =  a , b ⋅ ⋅ a, b  =  0, b ⋅ a, b  =  b b =  |b|𝜅
0 0

0 1
𝜅 * * 0 0

0 1
[ ]T * [ ]T * 2

 

How can we associate the matrices  and  to the basis vectors  and 1 0

0 0

0 0

0 1
= 1, 00 [ ]T

?  The answer is that they are the outer product of each vector with itself.  = 0, 11 [ ]T

 

 =  ⋅ 1, 0  =   =  0 0
1

0
[ ]

1 ⋅ 1 1 ⋅ 0

0 ⋅ 1 0 ⋅ 0

1 0

0 0

 

. =  ⋅ 0, 1  =   =  1 1
0

1
[ ]

0 ⋅ 0 0 ⋅ 1

1 ⋅ 0 1 ⋅ 1

0 0

0 1

 
So we get that  as the first triple product and a a =  ⋅ ⋅  =  * 𝜅 0 0 𝜅 𝜅 0 0 𝜅

 as the second.   The point of going to this trouble is that the outer-product b b =  ⋅ ⋅* 𝜅 1 1 𝜅
representation will generalize straightforwardly to any basis.
 
Now we will understand this yet another way:
 

 .a a =  ⋅ ⋅  =  ⋅  =  | |  =  |a|* 𝜅 0 0 𝜅 𝜅 0 0 𝜅 𝜅 0 2 2

 
What this says is that we projected the vector denoted by  onto the basis vector , and then took 𝜅 0

the magnitude of that projection.  Thus  represents the operation of projecting onto the  0 0 0

vector.  Moreover, look how it transforms the  vector:𝜅
 

.⋅  =  ⋅  =  1 ⋅ a+ 0 ⋅ b  =  a0 0 𝜅 0 0 𝜅 0 ( ) 0

 

If we let  stand for the probability of  and divide through by  then we get just .  Oh p = |a|0
2 0 p0 0

wait, what we actually get is
 

.  ⋅  =  a  =  
1

p0

0 0 𝜅
1

p0

0
a

|a|
0

 

This might not be exactly , but it is equivalent to it since  is always a unit complex scalar.  That's 0
a

|a|

 

 



good enough.  Thus  updates the state when outcome  happens.  Similarly, 1

p0

0 0 0

 faithfully updates the state when outcome  happens.  Again, the point is how this 1

p1

1 1 1

works for any basis state, not just the standard basis.  Let's trot out the general definitions first, then do 
the example within the   basis, then use   to measure  as originally defined as ,+ - ,+ - 𝜅

.a + b0 1

 
Definition: The projection operator associated to a pure state  is .𝜙 P  =  𝜙 𝜙 𝜙
 

Note that , so every projection operator is P  =  ⋅  =  ⋅  =  ⋅  =  P*
𝜙 𝜙 𝜙

*
𝜙

*
𝜙

*
𝜙 𝜙 𝜙

Hermitian.  More generally, we define:
 
Definition: A matrix  is positive semidefinite (PSD) if there is a matrix  such that .B A B =  AA*

 
Definition: A matrix  computes a projection if it is PSD and .P P = P2

 
By  we also haveP = P

*
𝜙 𝜙

 
,P P  = P = ⋅  =  ⋅ ⋅  =  ⋅ 1 ⋅  =  P𝜙

*
𝜙

2
𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙

 
since  is a unit vector.  So  is indeed a projection and is PSD.𝜙 P𝜙

 
Definition: A projective measurement is given by a set  of projections such that P , … ,P{ 1 m }

P  =  I.∑
m

i=1

i

 

From above,  is a projective measurement.  How about the  basis ,0 0 1 1 X

?  Using the numerics of the standard basis, we get:,+ + - -

 

 =  , , =+ +
1

2

1

2

T
1

2

1

2

1

2

1 1

1 1

 =  , , =- -
1

2

-1

2

T
1

2

-1

2

1

2

1 -1

-1 1

 

.  +     =  +  =   =  I+ + - -
1

2

1 1

1 1

1

2

1 -1

-1 1

1 0

0 1

 
 

 

 



So  is a projective measurement.  Note that if we used the  coordinates to ,+ + - - ,+ -

begin with, then the numerics would be  and would come out literally identical, =+ +
1 0

0 0

likewise if we apply the measurement to .  (Note: the third from last line on page = a  +  b𝜅' + -

145 would be less confusing if it defined  this way rather than say  again.)  Using the standard-𝜅' 𝜅
basis numerics:
 

.= , + ,  =  a+ b, a - b𝜅'
a

2

a

2

T b

2

-b

2

T
1

2
[ ]T

 
The triple product with  is:+ +

 

⋅ ⋅  =  a + b , a - b a+ b, a - b = 2a , 2a𝜅' + + 𝜅'
1

4
* * * * 1 1

1 1
[ ]T

1

4
* * a+ b

a - b

=  2a a+ 2a b+ 2a a - 2a b  =  4a a  =  a a =  |a| .
1

4
* * * *

1

4
* * 2

 
Similarly, we get .  That is a lot of rigamarole to replicate the answer we got ⋅ ⋅  =  |b|𝜅' - - 𝜅' 2

for measuring the original  in the standard basis.  The larger point is that the  vector with regard 𝜅 𝜅'

to the  basis has the same relation to it as  did to the standard basis.X 𝜅
 
However, when we expressly write rather than , then we are defining = a + b𝜅 0 1  = a, b𝜅 [ ]T

it in a way that is independent of a particular coordinate notation, and so it really is a different physical 
vector from .  To underscore the point (this is an example that should be on page = a  +  b𝜅' + -

146), let us measure  not  in the  basis.  𝜅 𝜅' X

 

⋅ ⋅  =  a , b a, b = a + b , a + b𝜅 + + 𝜅 * *
1

2

1 1

1 1
[ ]T

1

2
* * * * a

b

=  a a +  a b +  b a+ b b  =  |a| + |b| + a b+ b a  =  +
1

2

* * * * 1

2

2 2 * * 1

2

c+ c

2

*

 
where .  What happened?  The first thing to note is that the sum of a unit complex number  and c = a b* c
its conjugate is always a real number because the imaginary parts cancel.  Although in general the sum 
could be as big as  (or as low as ), because  arises as  where , the maximum 2 -2 c a b* |a| + |b| = 12 2

magnitude of  is .  Hence the probability of getting the outcome  stays within the range  c+ c* 1 + 0, 1[ ]

as required for a probability.
 

In fact, if  then  so  and , finally giving that the probability of getting 𝜅 = + a = b =
1

2
c =

1

2
c+ c = 1*

the outcome  is .  And the probability of getting the outcome  is:+ 1 -
 

 

 



⋅ ⋅  =  a , b a, b = a - b , - a + b𝜅 - - 𝜅 * *
1

2

1 -1

-1 1
[ ]T

1

2
* * * * a

b

=  a a -  b a - a b + b b  =  |a| + |b| - a b - b a  =  -
1

2
* * * *

1

2
2 2 * *

1

2

c+ c

2

*

 
with  as before.  This ensures that the probabilities sum to , regardless of what  is.  It is a nice c = a b* 1 c

self-study exercise to repeat this with the example  from the beginning of Tuesday's = ,𝜅
1

2 2

3

lecture.
 
There is an essential symmetry of measurement as well.  If we instead did  then we ⋅ ⋅- 𝜅 𝜅 -

would get the same answer.  Indeed, for a general other pure state , the double action𝜙
 

P  = ⋅ ⋅  𝜅 𝜙 𝜙 𝜅 𝜅 𝜙

 

is a product of the form  where .  And  back again, so the productcc* c = 𝜙 𝜅 cc = c c = cc*
*

*
*
( )* *

 of a complex number and its conjugate is always a real number too.  (More simply put, the phase 
angles add and cancel.)  This feeds into some notable philosophy:
 

• The only knowledge we can gain about a quantum state  (relative to any prior knowledge 𝜅
about how it was prepared) is by measuring it.

• All measurements of  go through the outer product .𝜅 𝜅 𝜅

• Hence , not , is the "unit of epistemology" (the origin of "episte-" is the idea of sending 𝜅 𝜅 𝜅
a message, i.e., an epistle).  This is a Hermitian operator and a PSD matrix with real entries and 
a projection.  All complex numbers have vamoosed.

 
This carries through when  is a state of multiple qubits, or of multiple qutrits, quarts, qudits 𝜅

(meaning -ary, as with card ranks where ), quopits (meaning qudits with  standing for a d d = 13 d = p
prime number), etc. (in infinite-dimensional Hilbert spaces).  The "real proof" of the principle, IMHO, 
comes from the extension to mixed states.
 
  
Mixed States Again (Decoherence later...)
 
Consider a mixed state represented as  where the  are p  +  p  +  ⋯  +  p1 𝜙1 2 𝜙2 m 𝜙m pi
nonnegative and sum to .1

 
Definition: The corresponding density matrix is
 

 .  𝜌 = p  +  p  +  ⋯  +  p1 𝜙1 𝜙1 2 𝜙2 𝜙2 m 𝜙m 𝜙m

 

 

 



Per above philosophy,  is all we can know about the mixed state (aside from any prior knowledge from 𝜌

having prepared it).  The letter  tends to be used, without a ket or bra around it.  Some more facts:𝜌
 

1. A density matrix is always Hermitian: .𝜌 = 𝜌*

2. The matrix designates a pure state if and only if ; note that this is automatic as shown 𝜌 = 𝜌2

above when .  m = 1

3. The results of measuring a mixed state can be computed by applying  as an operator to update 𝜌
the state, or with the double action to compute a probability of getting a given state.  By linearity, 
this gives the same results as working with each individual term and taking the linear 
combination.

 
Example: The density matrix of the mixed state  isp + 1- p0 ( ) 1

 

 .𝜌  =  p + 1- p  =  p + 1- p =p 0 0 ( ) 1 1
1 0

0 0
( )

0 0

0 1

p 0

0 1- p
 

Note that  unless  or , so this is generally not a pure state.𝜌 = ≠ 𝜌2
p

p2 0

0 1- p( )2 p p = 1 p = 0

 
How about ?  We get p  +  1- p+ + ( ) - -
 

.p + 1- p = + =
1

2

1 1

1 1
( )

1 -1

-1 1

1

2

p p
p p

1- p p - 1

p - 1 1- p

1

2

1 1- 2p
1- 2p 1

 

In general, this is different.  But for the equal mixture , both density matrices are the same: p =
1

2

.  In terms of the Bloch sphere, both mixtures map to the exact center of the sphere, 𝜌1/2 = 
0.5 0

0 0.5

which is halfway down the axis between  and  at the poles, and also halfway along the 0 1

equatorial axis between  and .  In physical terms, that means they are the same state.  That + -
might come as a surprise, because:
 

One is defined as a spread between the outcomes  and , the other between the outcomes 0 1

 and .  Isn't that like saying one is a choice between an apple and a pear, the other + -
between an orange and a grapefruit?

 
The ultimate point is that to probe the state, we have to choose a basis to measure against in advance.  
If we choose the standard basis, then to measure the probability for the outcome , even if we use 0

the  and  mixture, we still get+ -
 

P 𝜌  =  0.5  +  0.5   =   0.5   +  0.5  0 ( 1/2) 0 + + - - 0 0 + + 0 0 - - 0

 

 



=  0.5 ⋅  +  0.5 ⋅  =  0.5.
1

2

1

2

1

2

1

2

 
Note that this associated the terms so that the fact that the  and  vectors are  aligned to 0 + 45∘

each other in Cartesian coordinates, likewise  and , came out as an idea.  But we can get the 0 -

point much more succinctly upon measuring any outcome  for :𝜅 𝜌1/2

 

 =   =   =  0.5  =  0.5  =  0.5.𝜅 𝜌1/2 𝜅 𝜅
0.5 0

0 0.5
𝜅 𝜅 0.5I 𝜅 𝜅 I 𝜅 𝜅 𝜅

 
That's it.  However we try to probe the completely mixed state , it just behaves like a perfect 𝜌1/2

unbiased classical coin.  Regardless of the past history of what we mixed to make it, there is nothing 
else that it is now.
 
 
There is an especially meaningful way of decomposing a density matrix, indeed any Hermitian matrix.  
This is the spectral decomposition, given by the spectral theorem on page 149.  We will pause here 
and go back to chapters 5--7 to do more with quantum operations on multiple qubits first, however.
 
 

 

 


