
IAS/PCMI Summer Session 2000

Clay Mathematics Undergraduate Program

Advanced Course on Computational Complexity

Lecture 8: Chinese Remainder Representation

David Mix Barrington and Alexis Maciel
July 26, 2000

1. Overview

We are now ready to begin our study of integer division and related problems by
developing a method for representing long numbers by their remainders modulo a
number of short primes. Eventually (in Lecture 10) we will present the new theorem
of Chiu, Davida, and Litow, that DIVISION is in L, and consider the prospects for
placing it in the same class FOM that contains iterated addition and multiplication.
But in this lecture we need to begin developing background. Specifically:

• We define Chinese Remainder Representation (CRR) and consider the difficulty
of converting numbers from binary to CRR and vice versa.

• We recapitulate the proof of the Chinese Remainder Theorem, and define the
rank of a number in CRR, a property that will turn out to be useful in a number
of ways.

• We define a table of logarithms for each prime modulus that will allow us to
convert iterated multiplication to iterated addition in a variety of circumstances.
We also consider the difficulty of constructing such a table, introducing the new
complexity class FOLL.

• Finally, we show how to use the log table to carry out iterated multiplication
modulo a short prime, and hence iterated multiplication with input and output
in CRR, in FOM once the log table is available. The complexity class “FOM
with powering modulo short primes”, or FOMP, will turn out to be our best
upper bound for DIVISION and related problems.

1



2. The Fundamentals of CRR

Letm1, . . . ,mk be distinct prime numbers and letM be their product. By our analysis
of the density of primes, we can let both k and each of the mi’s be short numbers
(O(log n) bits) and still have M be a number with an arbitrarily large polynomial
number of bits. We will choose such numbers to make M larger than any of the
inputs and outputs to our various problems.

(In addition, we assume that the set of mi’s is easily computable — for example
it could consist of all the primes in a certain range of numbers. Once we pick the
range, k can be determined in FOM by counting the primes.)

If X is any number less than M , the Chinese Remainder Representation or CRR
of X is the sequence 〈x1, . . . , xk〉 where for each i, X is congruent to xi modulo mi.
The Chinese Remainder Theorem, which we will prove below, says that every number
from 0 to M−1 is uniquely represented by such a sequence. (Thus we will sometimes
refer to “CRR with modulus M” or “CRRM” when more than one modulus is in use.)

Many of the results we will prove about CRR also hold if the mi’s are powers
of distinct primes rather than just distinct primes. This will occasionally simplify
the statements of some results at the cost sometimes of making the proofs more
complicated. We will try to take note at each point where prime powers could be
used. For technical reasons we will want our primary modulus M to be the product
of distinct primes, but other moduli may not be.

Our basic strategy will be to store numbers in CRR rather than in binary, and
work with them in that form. This has the great advantage that we can work with
each different prime in parallel, allowing us to use short-number operations to solve
problems about long numbers. A potential difficulty with this method, however,
is that some problems that were easy in binary notation apparently become more
difficult. For example, given CRR representations of two numbers X and Y , how can
we determine which is larger?

Another difficuly is that our problems demand input and output in binary rather
than in CRR, so we need to be able to convert numbers from one representation to the
other. What complexity resources are needed to do this? Can we do it in FO + BIT,
or even in FOM?

Converting a binary number X to CRR involves dividing a long number by a short
number m and getting the remainder. Since we are given X in the form

∑
i xi2

i, it
suffices to find the remainder of each number xi2

i modulo m, add the results, and
reduce again mod m. (The last step, dividing one short number by another, is in
FO + BIT.) We’ve seen that ITERATED ADDITION can be done in FOM, but

2



what about calculating 2i modulo m? This is an example of powering modulo a short
number, a problem that will concern us greatly below.

It turns out that the crucial addition to FOM for our purposes will be exactly a
numerical predicate for powering modulo a short number: specifically, the predicate
“ai ≡ b modulo m”, where a, b, i, and m are all short numbers. We define FOMP to
be the class of problems definable by first-order formulas with majority quantifiers,
BIT, and this new numerical predicate. We will eventually prove:

Theorem 1 (Chiu-Davida-Litow, Allender-Barrington) DIVISION, POWERING,
and ITERATED MULTIPLICATION are all in FOMP, hence also in L-uniform
TC0, L-uniform NC1, and L itself.

Thus the very computing power we need to begin using CRR, by converting a
number into it, will turn out to be all we need to exploit it to the fullest.

What about converting a CRR number to binary? The right way to do this is
not at all clear. Powering modulo short numbers does not solve the problem for us
as before, but it can help in the right circumstances. Note that raising 2 to a power
modulo each mi is sufficient to get the representation of 2k in CRR, for any short
number k. If we can solve the division problem in CRR, then the following identity
will allow us to compute the k’th bit of X in binary:

BIT(k,X) = bX/2kc − 2bX/2k+1c

This gives the bit in question in CRR, but it is easy to test the result to see
whether it is the CRR for 0 or for 1. We have thus shown that we can convert to and
from CRR in FOMP if we can solve the possibly easier problem of DIVISION with
both input and output in CRR.

3. The Chinese Remainder Theorem

It is clear that if two numbers are congruent modulo M , they are also congruent
modulo each of our k primes, since each of these primes divides M . One way to prove
the Chinese Remainder Theorem is to prove the converse, that two numbers with
the same CRR must be congruent modulo M , by providing an algorithm to compute
a number from its CRR. (Since this mapping is the inverse of the obvious mapping
from numbers to CRR representations, and the set of distinct representations has size
M , the mapping is one-to-one.) We’ll now go through this computation to see what
it can do for us.

3



For each modulus mi, let Ci be the product of all the mj with j 6= i. (That is,
Ci = M/mi.) Let hi be the multiplicative inverse of Ci modulo mi, and let Di = hiCi.
Di has the property that it is congrent to 1 modulo mi and congruent to 0 modulo
each of the other mj’s. Thus the number

∑
i xiDi has the same remainders modulo

each of the primes as does X. If we subtract off a multiple rM of M from
∑
i xiDi to

get a number in the range from 0 to M − 1, that number must be X (again, because
this mapping from CRR’s to numbers must be one-to-one as it has an inverse).

This number r is called the rank of X with respect to CRRM . We will have to do
some work to compute it, but we can at least see now that it is a short number. It is
the floor of the sum

∑
i xiDi/M or

∑
i xihi/mi using the definition of Di. Since each

rational number hi/mi is between zero and one, we know that r is bounded above by
the

∑
i xi and thus by

∑
imi, a sum of a short number of short numbers and therefore

short.

Note that nothing in this section changes if the mi’s are powers of distinct primes
rather than primes. Since each Ci, for example, is a product of numbers each relatively
prime to mi, the inverse hi exists and we can compute Di.

4. Constructing and Using Log Tables

In our new class FOMP we have available to us the answers to all questions of the
form “is ai = b modulo m?” where all these numbers are short. (For convenience we
will use “=” to denote congruence rather than the more precise “≡”.) In effect we
have a table of these answers available, and with ordinary first-order quantifiers we
can use this table to find the discrete logarithm, modulo m, of any number b. If m is
prime, the numbers modulo m form a finite field, and thus the nonzero numbers form
a cyclic group under multiplication. (This is a standard fact in algebra, which you
may prove in the exercises.) Thus there are elements of this field, called generators,
such that any nonzero a is congruent to gi modulo m for some i. We fix a particular
generator for each m (such as the smallest one) and define this i to be the discrete
logarithm of a modulo m. In the next section we’ll use discrete logarithms to carry
out iterated multiplication in FOMP.

The status of discrete logarithms modulo a prime power is similar, but somewhat
more complicated. First, of course, there are numbers modulo pe that are divisible
by p and thus not relatively prime to pe. We can deal with these by writing them as
apd and then finding the discrete logarithm modulo pe−d. Also, the integers modulo a
prime power no longer form a field but only a ring, so we can no longer use our former
proof that the multiplicative group is cyclic. The multiplicative group Z∗pe , consisting

4



of the integers modulo pe that are relatively prime to pe, actually is cyclic with one
exception (where p = 2 and e > 2). With reference to powering, we can still identify
generators and compute logarithms in FOMP as before, though in the p = 2 case we
need to redefine “logarithm” slightly. It turns out that the multiplicative group in
this case has two generators (−1 and 5) and since one of them (−1) has order two we
can essentially use logarithms here as well.

First, though, how difficult is it to compute powers modulo a short number, and
thus get discrete logarithms? For definiteness, assume we are looking for the value
of ai modulo m. We first note that it is easy to get this in L, by simply calculating
a0, a1, . . . , ai in turn. We need to remember the current value of i and the current
and previous values of ai along with a, four short numbers in all. Since FOM is a
subclass of L, we see that FOMP is a subclass of L as well.

Can we do better by computing ai in another way? The technique of repeated
squaring is promising. We note that ai = b is true if there exists a c such that
either ai−1 = c and ca = b or ai/2 = c and cc = b (all modulo m). We can reduce
questions about ai by a first-order formula to questions about aj for j < i, and use
recursion to solve the latter problems. It is easy to see that this recursion terminates
in O(log i) = O(log n) steps. If we use this to construct a circuit, we use depth O(1)
to simulate each level and thus depth O(log n) in all. Size is polynomial (each gate
represents a predicate of the form ai = b and there are only polynomially many choices
of a, i, and b) so we have put this problem in AC1. Unfortunately AC1 contains L, so
we are no better off than before. Using repeated squaring in sequential computation
saves time, but still uses O(log n) space.

We can do better in terms of depth, however, if we use the fact that we have
available not only the powers of a but the powers of all numbers modulo m. Note
that if i is a perfect square j2, for example, ai = b is true iff there exists some number
c such that aj = c and cj = b. We can add this method to our recursion, and note
that it now closes in O(log log n) rather than O(log n) phases.

We’ve now solved the powering problem (modulo a short number) with circuits of
depth O(log log n) and polynomial size. If we had the necessary terminology (you are
invited to look it up for the exercises) we could describe the powering predicate in
terms of families of first-order formulas where the number of quantifiers increases with
n, in this case to O(log log n). The resulting class is equivalent to uniform circuits of
depth O(log log n) and polynomial size, a class called FOLL (for “first-order log-log”).

We’ll show in Basic Lecture 10 that even non-uniform circuits of this size and
depth cannot do the parity language, and thus cannot do all the problems in L. This
suggests, but doesn’t prove, that FOMP does not require the full power of L and is
probably a strictly smaller class. (But for all we can prove, FOM and L might be

5



equal, making the distinction moot.)

5. Iterated Products in the Class FOMP

Now that we have discrete logarithms, let’s use them. Suppose we have numbers
y1, . . . , yn and want the product y1 · · · yn modulo m where m is prime. We simply
find the discrete logarithm zi for each number yi, find the sum s of the zi’s modulo
m, and look up the answer gs modulo m in our table of powers. Since the laws of
logarithms work perfectly well modulo m, this is valid. (We have to say what to do if
one of the yi’s is zero, of course, which you may do in the exercises.) We have shown
that the problem of iterated multiplication modulo a short prime is in FOMP.

Iterated products modulo a prime power are similar though more complicated.
Given numbers modulo pe, we must find and add together the number of factors
of p in the product. If this is e the product is zero, otherwise if it is d < e we
treat the p-free parts of each number as being modulo pe−d, and multiply these using
discrete logarithms modulo pe−d. If p = 2, we may need to add together both the
number of −1 factors and the discrete logs with respect to the “generator” 5 to do
the multiplication. But given this, we can perform iterated multiplication modulo
any prime power in FOMP.

And now, of course, we can see the virtues of CRR. If we have long numbers
X1, . . . , Xn each in CRR with respect to M , in FOMP we can take the n remainders
for each individual prime modulus m and calculate their iterated product modulo
m. The n answers are exactly the CRR values for the product of the Xi’s. We have
shown that iterated product is in FOMP if the input and output are both in CRR.

6. Exercises

1. Consider CRR with moduli 3, 5, 7, and 11 so that M = 1155. Find the CRR
of 206 and the number whose CRR is 〈2, 1, 4, 8〉. Find the rank of each of these
numbers with respect to CRR with these moduli.

2. Explain why the multiplicative group of a finite field is cyclic. (You may use
the fact that a polynomial of degree d over a finite field has at most d roots, and
consider the factorization of xe − 1, where e is the order of the multiplicative
group and 1 is the identity of the field. Look at the possible orders of other
elements if there is no element of order e.)

6



3. Show that 2 is a generator for the nonzero numbers modulo 37.

4. Verify (perhaps with the aid of a group theory or number theory book) the
claims made above about the multiplicative groups of the integers modulo prime
powers.

5. Explain why the standard simulations for poly-size circuits of depth O(log log n)
and unbounded fan-in (the class FOLL) do not put this class within either NC1

or L.

6. Show that in any graph of n vertices, we can test in FOLL whether there is a
path of length f(n) from s to t if the function f(n) is polylog. Show that if the
graph has only poly-log many vertices, its reachability problem is in FO + BIT.

7. We don’t have a discrete logarithm for 0 even if the modulus is prime. How
does this affect our algorithm for iterated multiplication modulo a short prime
m?

8. Look up “iterated quantifier blocks” and “inductive definition” in Immerman’s
book and explain why FOLL can be more precisely defined as the languages
described by first-order formulas with O(log log n) quantifiers. Explain why the
recursive definition of “ai = b modulo m” above puts this predicate in FOLL.

9. We have shown that the iterated product problem modulo any short prime
power is in FOMP. Show that the iterated product modulo any short number
is in FOMP, even if the inputs and outputs are given in binary.

7


