1.

IAS/PCMI SUMMER SESSION 2000
CLAY MATHEMATICS UNDERGRADUATE PROGRAM
ADVANCED COURSE ON COMPUTATIONAL COMPLEXITY

Lecture 9: Towards Logspace Division

David Mix Barrington and Alexis Maciel
July 27, 2000

Overview

We continue our progress toward the result that integer division and related problems
are in the class FOMP (first-order formulas with majority quantifiers and a numerical
predicate for powering modulo short numbers) and thus in L-uniform TC® and in L
itself. Last time we introduced Chinese Remainder Representation and showed that
we can compute [TERATED MULTIPLICATION if the input and output are in CRR.
By the end of this lecture we will have solved an important special case of DIVISION
with input and output in CRR. This will require a series of technical results:

We show how to compute (in FOMP) the rank of a number represented in CRR,
which tells us the difference between the number calculated in the proof of the
Chinese Remainder Theorem and our original number.

We show how the rank function allows us to compare two numbers each repre-
sented in CRR (with the same modulus M) and tell which is larger.

Given a number in CRR, we show how to find (in FOMP) its remainder modulo
a new short prime number p, not one of the divisors of M. This will allow us
to convert a CRR number to a new CRR representation with different moduli.

Using this we solve the special case of DIVISION where the divisor Y is nice,
meaning that it is the product of short prime powers.

Finally we show that given an arbitrary Y, we can find a nice divisor D between
Y/2 and Y. From the above we can find X/D, leaving us in our next lecture
with the problem of computing (actually of approximating) the rational number
D/Y. We indicate how this last step will finish the proof that DIVISION is in
FOMP.

2. Computing the Rank of a CRR Number

Recall that if X = (z1,...,2,) is a number in CRR);, that is, CRR with moduli
mq,...,m, where M = my---my, we chose numbers Dy, ..., D, so that each D; is
congruent to 1 modulo m; and congruent to 0 modulo m; for all j # ¢. X is congruent
mod M to the number Y, x;D;, and the rank of X is defined to be the number r such
that X = (3, x:D;) — rM.

Davida and Litow recognized the importance of rank and gave an L-uniform NC!
algorithm to compute it. Here we present an FOMP algorithm due to Macarie:

Theorem 1 Given X in CRRyy, the rank of X can be computed in FOMP.

Proof As we noted before, the rank is the floor of the rational number Y, x;(D;/M).
By the definition of D;, this is equal to >, x;(h;/m;) where h; is the multiplicative
inverse of the integer M /m; modulo m;. To calculate h;, we must first use iterated
product modulo m; (in FOMP using discrete logs and iterated addition) to get M /m;
modulo m;. Then the inverse may be obtained in FO + BIT.

For any number ¢ = O(1), we can approximate each rational number x;h;/m; to
clogn + log k bits of accuracy in FO + BIT, and then add these approximations in
FOM. The error in each approximation is at most n=¢/k, so the overall answer is off
by at most n~¢ In all likelihood this approximation will enable us to tell for sure
what the floor of the real sum is, but we must guard against the possibility that this
sum is very close to an integer. To do this we pick ¢ so that n¢ is considerably bigger
than any of the m;’s, and reduce our problem to a simpler one in the case that the

approximation might be wrong.

Let s be the integer with smallest absolute value such that }°, x; D; is equal to s
plus a multiple of M. (Thus s is either equal to X = (3, z;D;) — rM or is equal to
the negative number X — M.) We call s the symmetric remainder of X modulo m.

Lemma 2 If s is an integer such that |s| < M/3my, then s is also equal to the
symmetric remainder of s modulo M /my.

Proof Write s as aM/my, + b where b is the symmetric remainder modulo M /my.
Note that |b| < M /2my. Even if s and b have their maximum possible absolute values,
it is not possible for a to be nonzero. Therefore the equality holds. O

Our algorithm for the rank function is as follows. For every number j with 1 < j <
k, compute a rational approximation r; for the rank as defined above with modulus

M; =my...m;. If r; (the approximation for the original modulus M) is not within
n~¢ of an integer, then |ry| is our answer. Otherwise choose ¢ as large as possible
so that r, is not within n=¢ of an integer. By repeated application of the lemma, 7,
is just below an integer iff the true sum Z;“:l x;D; is just below an integer. We use
this fact to determine whether |7] or [r;] is the right answer, and then report that.
The number ¢ must exist because n® > m; and so r; at least cannot be close to an
integer.

We have done only a polynomial number of FOMP calculations in parallel, followed
by some FO + BIT calculation to determine our final answer. Thus this algorithm is
in FOMP. O

3. Comparing Two CRR Numbers

Our next problem is to compare two numbers X and Y, each given in CRR,,. It is
sufficient to consider the number A = X — Y and determine whether it is above or
below M /2. Of course, we can compute A in CRR, by letting a; = z; — y;.

The idea is to look at the number C' whose CRR is (¢;), where ¢; is equal to 2a; if
2a; < m; or to 2a; — m; otherwise. Since C'is congruent to 2A modulo M we know

that either C'=2A or C'=2A — M. The first case holds iff A < M /2, so we merely
need to find out which case holds.

Let r be the rank of A and let s be the rank of C'. By the definition of rank,
A= (>,a;D;))—rM,so2A = (3;2a;D;)—2rM. Similarly, C = (3; ¢;D;) —sM. The
difference between Y, ¢;D; and Y, 2a;D; is exactly a term of the form m;D; = h; M
each time that ¢; is 2a; — m; rather than 2a;. Defining ¢ to be the sum of the h;
in these “rollover cases”, we have C' = (3 2a;D;) —tM — sM. We can compute t
easily given the values of the h;’s, and these are available in FOMP. All we need to
do to determine whether 24 = (', then, is to check whether 2r = s 4+ t. Since rank
is computable in FOMP, we can decide this, and thus compare CRR numbers, in
FOMP.

4. Changing the Moduli of a CRR Number

Suppose that X is a number in CRR;, and that p is a short prime power that does not
divide M. We have seen that in FOMP we can calculate iterated products modulo
p using discrete logarithms (slightly modified if p is not prime) and ITERATED
ADDITION. Thus we can compute the remainders modulo p of Cj, h;, and thus D;.

Then, again using ITERATED ADDITION, we get the remainder of) z;D; modulo
p. To find the remainder of X modulo p, all we have left to do is to subtract off the
remainder of M modulo p. Can we calculate rM modulo p in FOMP?

Yes. We saw above that we can get the actual number » in FOMP, and because
r is short we can then get the remainder of » modulo p using only FO + BIT. M is
an iterated product of some given numbers, and we have observed that in FOMP we
can find this modulo p as well.

It follows from this result that if B is any product of short powers of distinct
primes, we can take a number X in CRR,; and convert it to CRR . This will allow
us to get started with DIVISION.

5. Dividing by a Nice Number

We are now finally prepared to carry out an important special case of DIVISION.
Define a number to be nice if all of its prime power factors are short. If X is an
arbitrary number given in CRR with respect to M, and B is nice, we will show how
to compute | X/B]| in FOMP. (Note that this problem is only interesting if B is less
than X and thus less than M.)

We have just seen that we can convert X from CRR); to CRRp. The remainder
of X modulo B, which we will call E, is the unique number less than B that has
this particular CRRp form. By finding the rank of E with respect to B, we can now
use the argument above to find the remainders of £ modulo each of the numbers m;
and thus the CRR); form of E. Subtracting this CRR); from that of X, we get the
CRR; for the number X — E, which is a multiple of B.

It is easy in the same way to find the CRR,, for B. If B has an inverse modulo
M, we can compute it in CRRj; and then compute (X — F)B~! in CRRy;, and we
are done because (X — F)B~! is exactly | X/B]. Unfortunately things are a little
more complicated if B and M share a prime factor.

In this case, let NV be the product of all the prime divisors of M that are relatively
prime to B. (Here is where we need the technical assumption mentioned earlier, that
M is a product of distinct short primes and not just short prime powers.) We can
certainly find B~! modulo N in CRRy, and then compute (X — F)B~! in CRRy.
This number is congruent modulo N to | X/B], but is that good enough? Because
M is the product of its prime divisors, we can say that BN > M and thus M/B
and hence X/B are smaller than N. So we have the CRRy for the right number,
and our only remaining problem is to get the CRR,, for it. We do this by finding

its remainder modulo m; for any of the m;’s that divide B. This requires finding the
rank of the number modulo N and computing some more iterated products.

6. Finding a Nice Approximate Divisor

We can now divide by a nice number (though our result is in CRR rather than in
binary). Of course our actual divisor Y may not be nice. Our strategy will be to find
a nice number D that is close to Y, specifically, between Y/2 and Y. The rational
number X /Y is exactly equal to (X/D)(D/Y). In the next lecture we will show how
to find a fraction N/A where A is nice and N/A is a very close approximation to
D/Y. Then when we use “nice division” to get | X N/AD], this will be within one of
| X/Y | and we can solve DIVISION (with input and output in CRR) by testing the
possible quotients. (Recall, though, that with DIVISION in CRR we can extract any
given bit of the binary form of a CRR number, and thus convert freely from CRR to
binary. So we will then have solved the original DIVISION problem as well.)

To finish for today, then, we need to find this nice divisor that is between Y/2
and Y. We take a list of short odd primes and begin multiplying them together until
their product exceeds Y. Then we remove the last prime and begin multiplying by
two until the product exceeds Y. Removing the last two from the product gets our
desired approximation, which is nice because it is a product of short primes and a
power of two that is also short.

This search algorithm requires comparing the trial products with Y. Earlier in this
lecture we gave an FOMP algorithm to compare any two numbers given in CRR ;.
We are given Y in CRR);, and we can easily compute the trial product in this form
because we can perform iterated multiplication on numbers in CRR. We merely have
to be sure that our list of primes is long enough that we can eventually exceed Y.

7. Exercises

1. If we can compare any two numbers in CRR,;, we can use binary search to get
some of the high-order bits of the binary representation of a CRR,; number.
How far will this method get us in FOMP, assuming we use comparison but not
DIVISION?

2. Describe the CRR), representation of the number | M /2] for general M (assum-
ing that all the primes dividing M are odd). What is the remainder modulo
each m;?

. If X and m are any numbers, the symmetric remainder of X modulo m is
the unique number r that is congruent to X modulo m and that satisfies
—m/2 < r < m/2. Show that CRR could equally well be defined with sym-
metric remainders in place of remainders, and that the rank problem reduces
to finding whether the symmetric remainder of a long number modulo a short
one is positive or negative.

. If M is a product of short odd primes and X is any number such that 0 < X <
M, the inverse of X modulo M is the unique number Z (if any) such that X7
is congruent to 1 modulo M. Which numbers have inverses? Show that the
CRR for the inverse, if it exists, can be computed in FO 4+ BIT from the CRR
for X.

. Show that if X happens to be a short number, we can convert it from CRR to
binary in FO + BIT.

. How difficult is it to test whether a number is nice, or to find its prime factor-
ization if it is? (We may assume that whenever we are “given a nice number”
in our algorithms above, we are given its factorization.)

