
IAS/PCMI Summer Session 2000

Clay Mathematics Undergraduate Program

Basic Course on Computational Complexity

Lecture 2: The Complexity of Some Problems

David Mix Barrington and Alexis Maciel
July 18, 2000

1. Parity

The parity of a bit string is simply whether the number of 1’s in that string is odd
or even. The parity problem is to determine the parity of an input bit string. The
corresponding formal language is the set of all bit strings that have odd parity.

We first present a machine that decides parity. The machine scans the input from
left to right. After looking at each bit, the machine remembers whether the number
of 1’s seen so far is odd or even. Initially, the number is 0 and therefore even. The
machine then toggles between even and odd for each 1 seen in the input, and does
nothing for each 0. This even/odd toggle can be incorporated into the internal states
of the machine or it can be stored explicitly in its memory. In either case, the machine
uses a constant amount of space and parity is in DSPACE(1).

We now construct a family of circuits for parity. Let x = x1 · · ·xn be an input
bit string of length n. Considering addition modulo 2, we want the circuit to output
the sum of the input bits. Since addition modulo 2 is associative, we have that
x1 + · · ·+ xn = (x1 + · · ·+ xn/2) + (xn/2+1 + · · ·+ xn). Using this idea repeatedly, we
see that parity can be computed with a binary tree of parity gates. The depth of this
tree is O(log n). To obtain a Boolean circuit, we only need to show that these parity
gates of fan-in 2 can be implemented using AND, OR and NOT gates of fain-in at
most 2. This is easy since a + b = 1 (mod 2) if and only if (a ∧ ¬b) ∨ (¬a ∧ b).
Therefore, parity is in NC1.

2. Addition

Given two n-bit binary numbers, the addition problem is to determine their (n+1)-bit
sum. Note that we are not deciding a language here but computing a function. An

1



n-bit binary number a =
∑n−1
i=0 ai2

i will be represented in the usual way by the string
an−1 · · · a0. We refer to ai as the ith bit of a.

Since the input consists of two numbers, we need to agree on a way of encoding
two numbers as a single input string. One way is to simply concatenate the n-bit
binary representations of the two numbers, giving us a 2n-bit input string. In other
words, if the two input numbers a and b have binary representations an−1 · · · a0 and
bn−1 · · · b0, then the pair 〈a, b〉 will be encoded as an−1 · · · a0bn−1 · · · b0. The results
presented in this section apply equally well to any other reasonable encoding scheme.

We begin with a machine that computes addition. To simplify things, we will
start by describing a machine that produces the output in reverse order, i.e., with the
0th bit first and the nth bit last. By examining a0 and b0, the machine can determine
the 0th bit of the sum and produce it as output. It can also determine the bit that
should be carried over to position 1. Now the machine adds a1, b1 and this carry. This
determines both the 1st bit of the output and a new carry. The machine repeats this
for every position in the input numbers and also produces as output the last carry.

Two details need to be taken care of. First, the machine needs to keep track of the
current position in a and the current position in b. This can be done by maintaining
two pointers, an idea that was mentioned in the first lecture. A third pointer, initially
set to 1, can keep track of the current position of the input read head. By comparing
this pointer to the other two, the machine can easily reposition its input read head
over the positions being currently considered in the input numbers.

The second detail concerns the initialization of the first two pointers. To do this
correctly, the machine needs to figure out where a ends and where b begins. This can
be done by first scanning the input to determine its total length, verifying that this
length is even and then dividing it by two. Note that dividing an even number by 2
corresponds to simply shifting its binary representation one bit to the right.

Since all the space requirements of this machine are for a carry, three pointers
and a few counters, we conclude that computing addition, with the output in reverse
order, is in L.

To produce the output in the correct order, we design a second machine. One thing
the second machine could do is simulate the first machine so it can store its output
and then reverse it. Such a simulation can be done by incorporating the program
and internal states of the first machine into the program and internal states of the
second machine. During the simulation, no output is produced. Instead, the second
machine simply stores the output the first machine would have wanted to produce.
This output can then be reversed and produced. However, this new machine now
uses a linear amount of space. We can still manage to use only logarithmic space,

2



but we need to proceed differently.

The second machine will start by simulating the first one to figure out what the
nth bit of the sum is. Once again, the first machine is not allowed to produce output
directly. When the first machine tries to produce the nth bit of the sum as output, the
simulation ends and the second machine produces that bit as output. The simulation
is then repeated for all the other bits of the sum, one after the other, in the right
order. Note that the second machine will require enough space to store the contents
of the first machine’s memory plus a counter or two to control the simulation. Since
the first machine used a logarithmic amount of space, so will the second machine.
Thus addition is in L.

It is interesting to note that what is happening here is that the second machine is
using the first one to solve the following problem: given two n-bit binary numbers and
a position number i, determine the ith bit of the sum of the two numbers. Since the
output here consists of a single bit, this problem can be viewed as a decision problem.
In fact, it can be argued that in some sense, this decision problem is equivalent to
the problem of computing the original function.

We could now use an approach similar to the above sequential algorithm to con-
struct a circuit that computes addition. This circuit would have O(n) depth. Instead,
we will now obtain a circuit of constant depth.

This will require a different idea called the carry look-ahead method. Say that
position i generates a carry if ai and bi are both 1. Say that position i propagates
carries if at least one of ai or bi is 1. There will be a carry coming into position i+ 1
if and only if (1) position i generates a carry or (2) position i − 1 generates a carry
and position i propagates it, or (3) position i−2 generates a carry and positions i−1
and i propagate it, or . . . More symbolically, let gi = ai ∧ bi, pi = ai ∨ bi and let ci
denote the carry coming into position i. Then, for i = 1, . . . , n,

ci =
i−1∨
j=0

gj ∧ pj+1 ∧ · · · ∧ pi−1.

The ith bit of the output can now be easily computed from ai, bi and ci. This gives
an AC0 circuit for addition.

3. Multiplication

Given two n-bit numbers, the multiplication problem is to determine their 2n-bit
product. Once again, we are computing a function. We will use the same input
encoding as for addition.

3



As for addition, we first describe a machine that produces the output in reverse
order. A second machine that uses only a logarithmic amount of additional space can
be constructed using the same technique as for addition.

Suppose that the two input numbers a and b have binary representations an−1 · · · a0

and bn−1 · · · b0. Following the usual multiplication algorithm, the product of a and b
can be written as

∑n−1
i=0 abi2

i. Each of the n terms in this sum is easy to compute.
Adding them can be done as follows. Add all their position-0 bits. This can be
done by updating a simple counter. In the end, the position-0 bit of this counter
is the position-0 bit of the sum. Produce that bit as output, subtract it from the
counter and divide the counter by 2. Now add the position-1 bits to the counter.
The position-0 bit of the counter is now the position-1 bit of the sum. Once again,
produce that bit as output, subtract it from the counter and divide the counter by
2. Repeat this for all the positions. Then output the remaining bits of the counter.
The key thing to realize is that the value of the counter will never exceed 2n, so that
its size will always be O(log n).

The above strategy gives a polynomial-time algorithm that uses O(n2) space. This
large amount of space is what is needed to store the n numbers abi2

i. We can do
better in terms of space by not storing these numbers explicitly but instead computing
their bits as needed. The amount of space used then decreases dramatically to only
O(log n). Thus multiplication, with the output in either order, is in L.

A circuit for multiplication can be constructed by using the same divide-and-
conquer strategy that was used for parity. First, compute the n numbers bai2

i, for
i = 0, . . . , n − 1. Then add these numbers two at a time using a binary tree of
additions. Since each of these additions can be performed by an AC0 circuit, we get
an AC1 circuit for multiplication. Note however that an NC1 multiplication circuit
can be constructed. This will be done in the advanced course.

4. Graph Reachability

Given a graph G and two nodes s and t, the reachability problem is to determine
whether there is a path from s to t in G. We assume that the graph is directed and
that it is given in some reasonable way, such as by an adjacency matrix or by an
adjacency list.

We present here a polynomial-time algorithm for reachability. The algorithm
works by marking nodes that can be reached from s. Initially, only s is marked.
Then, the algorithm performs a series of passes through all the nodes in G. If it finds
an unmarked node that can be reached from a marked node, it marks that node. This

4



process stops when an entire pass executes without marking a single new node. At
that point, the marked nodes are precisely those that can be reached from s. It is now
just a matter of verifying that t has been marked. The algorithm runs in polynomial
time because the number of passes performed will always be at most the number of
nodes in G.

The reader may have noticed that in describing the previous algorithm, we did not
refer to a machine. Since our definition of an algorithm is in terms of a machine (one
that eventually halts on every input), we were still talking, at least implicitly, about a
machine. What has changed, however, is the amount and level of detail we provided.
In particular, we no longer talked about pointers to the input or counters. And we
certainly did not specify the precise movement of the memory heads. This higher
level of description is convenient; it allows us to make abstraction of details such as
the exact nature of the encoding of the input. It also stresses an important point: the
fact that the reachability problem, for example, has a polynomial-time algorithm does
not depend on our particular definition of an algorithm or on the particular details of
the underlying model of computation. From now on, in describing algorithms, we will
mention lower-level details only when necessary to establish the complexity bounds
we are interested in.

It is important to realize, however, that if we wanted, we could implement any of
our high-level algorithms by providing a more detailed description of a machine (with
counters and head movement) or even a full-detail description including a program
with all of its instructions. In fact, it may be a good exercise at this point to fully
describe a machine that decides parity or one that has a counter in memory and
increments it by one.

5. The Circuit Value Problem

Given a circuit C and an input w, the circuit value problem is to determine the output
of C on w. A circuit is a labeled, directed graph so we can use any reasonable graph
encoding. The node labels are simply either input bit numbers or the words AND,
OR or NOT, together with possibly the mention “output”.

Circuits can be evaluated in polynomial time by an algorithm similar to the reach-
ability algorithm. The circuit evaluation algorithm figures out and records the value
of all the gates in the circuit. Initially, only the value of the input gates (and any
other gate with no input wires) is known. The algorithm then performs a series of
passes through all the gates in C evaluating all the gates it can, i.e., all those whose
input values are already known. Eventually, the output gate of the circuit will be

5



evaluated. The algorithm runs in polynomial time since every pass will evaluate at
least one new gate so that the number of passes will be no greater than the number
of gates in the circuit.

What about a circuit for the circuit value problem? Note that we cannot simply
say that we will use the given circuit to figure out what its value is. We need a
single circuit that can evaluate any given circuit. Later we will show that the circuit
value problem, and in fact every problem in P, can be computed by polynomial-size
circuits.

6. 3-Colorability

A graph is 3-colorable if we can assign one of three colors to each of its nodes in such
a way that no two adjacent nodes get the same color. The 3-colorability problem is
to determine whether a given graph is 3-colorable.

This problem can be solved by the exhaustive search method. The algorithm
considers, one after the other, all the possible assignments of 3 colors to the nodes of
the graph. Each assignment is examined to see whether it constitutes a 3-coloring of
the graph. If a 3-coloring is found, the graph is accepted. If no 3-coloring is found,
the graph is rejected. Since the number of 3-colorings is exponential in the number
of nodes in the graph, this algorithm will not run in polynomial time. However, it
will use only a polynomial amount of space, so we conclude that 3-colorability is in
PSPACE.

7. Exercises

1. Show that if a language can be decided by a circuit family of logarithmic depth
and fan-in 2, then it is in NC1.

2. Encode pairs of binary numbers by interleaving the bits in their binary rep-
resentations in reverse order. In other words, if an−1 · · · a0 and bn−1 · · · b0

are the binary representations of a and b, then the pair 〈a, b〉 is encoded as
a0b0a1b1 · · · an−1bn−1. Show that under this encoding, the addition problem
(with the output produced in reverse order) can be solved by a DFA and thus
is in DSPACE(1).

3. Show that the following problem can be solved by a DFA: given a binary number,
determine whether it is divisble by 3.

6



4. Given two n-bit numbers, the comparison problem is to determine if the first
number is greater than the second one. Under the encoding described in the
text, show that this problem can be solved in L.

5. Suppose that two functions can be computed by machines using a logarithmic
amount of space. Show that the composition of these two functions can also be
computed in L. (Thus the class of functions in L is closed under composition.)

6. Complete the details in the construction of the AC0 addition circuit. In par-
ticular, show how to compute the ith bit of the output from ai, bi and ci and
show that the circuit has size O(n2).

7. Show that addition can be computed by circuits of linear size.

8. Show that any language decided by a DFA can be decided by circuits of linear
size.

9. Show that the reachability algorithm will mark every node that can be reached
from s.

10. Show that the circuit evaluation algorithm will evaluate every gate in the circuit.

7


