
IAS/PCMI Summer Session 2000

Clay Mathematics Undergraduate Program

Basic Course on Computational Complexity

Lecture 3: Nondeterministic Computation

David Mix Barrington and Alexis Maciel
July 19, 2000

1. Definitions and Examples

In the previous lecture, we saw a decision algorithm for the 3-colorability problem
based on the exhaustive search method. That algorithm ran in exponential time
because, in the worst case, it had to examine every possible 3-coloring of the input
graph. Can we design an algorithm for 3-colorability that runs in polynomial time?
The answer to this question is not known. Nevertheless, we can say something more
about the complexity of this problem.

The 3-colorability problem has the following interesting property: if a graph is 3-
colorable and if somehow we can find a 3-coloring of the graph, then we can verify, in
polynomial time, that the 3-coloring is valid and that the graph is indeed 3-colorable.
What we are going to do in this lecture is add to our model of a machine the ability
to correctly guess a 3-coloring of the graph, if one exists. A machine for 3-colorability
will then proceed as follows: it will attempt to guess a 3-coloring, verify that whatever
it guessed is indeed a 3-coloring and accept if it is. If a graph is 3-colorable, then there
is a way for the machine to accept it. If a graph is not 3-colorable, then whatever
it does, the machine will reject it. So the graphs that can possibly be accepted are
precisely those that are 3-colorable.

How will we incorporate this guessing ability into the definition of a machine?
Recall that our current model of a machine is deterministic: for each observable
state, the machine has exactly one behavior. We define a nondeterministic machine
by specifying any number of possible behaviors for each observable state. So at each
step in the computation, a nondeterministic machine may have several options.

In the deterministic case, we say that a machine decides a language if it accepts
every string in the language and rejects all the others. In the nondeterministic case,
we say that a machine defines a language: the set of all strings it may accept. In other

1



words, a string is in the language of a nondeterministic machine if and only if there is
a sequence of choices that leads the machine to accept the string. All other strings, for
every possible sequence of choices, will either be rejected, result in a nonterminating
computation, or in one that gets stuck somewhere (because no behavior is defined for
the corresponding observable state).

Here’s an example. Suppose we are given two strings x and y as input, separated
by some marker, and we want to decide whether the x appears as a substring in y. (x
is a substring of y if y is of the form uxv, for some strings u and v.) A machine could
solve this problem by trying all possible starting locations for x in y. But notice that
this may require many passes through large portions of y. In fact, this algorithm runs
in time Ω(n2).

A simpler machine that goes through its input only once can be designed using
nondeterminism. The machine simply scans y until it guesses it has found the starting
location of x. It then verifies that the guess was correct. If x does appear in y, then
some guess will be correct and lead the machine to accept. Otherwise, all guesses will
be wrong and cause the machine to reject.

We say that a nondeterministic machine runs in time f if it takes at most f
steps before it halts, for every possible sequence of choices. Similarly for space. For
example, the above nondeterministic machine for the substring problem runs in time
O(n).

NTIME(f) is the class of languages defined by nondeterministic machines that
run in time O(f). Similarly for NSPACE(f). Some interesting classes are
NP = NTIME(nO(1)), NSPACE(1), NL = NSPACE(log n), and NPSPACE =
NSPACE(nO(1)). A subclass of NSPACE(1) corresponds to the nondeterministic
counterpart of the DFA. An NFA is a DFA that has any number of possible behaviors
for each observable state.

Now let’s go back to 3-colorability. As mentioned earlier, the idea behind a non-
deterministic machine for this problem is to attempt to guess a 3-coloring and verify
that whatever was guessed is indeed a 3-coloring. Given a graph with n nodes, the
guessing stage can be implemented by having the machine write in its memory a
string of n symbols each chosen from a set of 3. This string will be interpreted as an
assignment of colors to the nodes of the graph. The nondeterminism is in the choice
of which color to write for each node. Once the color assignment is written it is an
easy matter to verify whether it constitutes a 3-coloring. Thus 3-colorability is in
NP.

As another example, consider the graph reachability problem of the previous lec-
ture. There we showed that the problem is in P. By using nondeterminism, we can

2



obtain a machine that is very efficient in terms of space. The idea is to have the
machine simply guess a sequence of nodes through the graph and then verify whether
this sequence constitutes a path from s to t. The key to using a small amount of
space is to not write the entire sequence of nodes right away but write it one node at
a time, as needed. If the graph has n nodes, then each node can be identified by a
log n-bit number. Thus graph reachability is in NL.

We have formally defined nondeterministic machines, and the languages they de-
fine, but how are we supposed to think about the computation of a nondeterministic
machine? One possibility is to pretend that the machine has the magical ability to
make the correct choices, if these exist. Or that the machine has access to a myste-
rious guide that whispers in its ear the correct choices. If the input can be accepted,
the machine will find a way. If the input cannot be accepted, the machine will end
up rejecting no matter what it does.

Another possibility is to imagine that every time the machine is faced with a
choice, it splits itself in two so it can explore both options at the same time, in parallel.
Or, equivalently, we can imagine that the nondeterministic machine is actually not a
single machine but a collection of deterministic machines operating in parallel. Every
time a choice needs to be made, a different machine will be assigned the task of
continuing the computation according to each possible option. In either case, the
input is accepted if any of the parallel computations leads to acceptance.

In any case, it is important to realize that nondeterministic machines do not
constitute a reasonable notion of algorithm. After all, real world computers are
deterministic. For this reason, we have avoided saying that nondeterministic machines
decide languages and used instead the terminology that nondeterministic machines
define languages. If a nondeterministic machine is going to give us an algorithm for
the language it defines, we will have to simulate it using a deterministic machine. One
simple way of doing this is to simply try all possible sequences of choices, being careful
not to get stuck prematurely in nonterminating computations. In the next section,
we will see that this can be done but with a huge loss of efficiency. For example, NP
machines will give us exponential-time algorithms. Since a large number of problems
of significant practical interest do have NP machines but no known polynomial-time
algorithm, the question of whether nondeterminism can be simulated more efficiently,
without this exponential loss, is of great importance.

3



2. Deterministic Simulations

Now that we have added to our model of a machine this mysterious ability to make
correct guesses or choices, it is appropriate to ask how much power we have really
added to our machines? In this section we provide a partial answer that depends on
the complexity bounds involved.

First, in the case of finite automata, we show that NFA’s can be simulated by
DFA’s. Thus, in this case, nondeterminism does not add any more power. Note,
however, that the DFA may have a much larger (but still constant) number of states
than the NFA. In instances where this blow-up in the number of states is not a
problem, then nondeterminism in finite automata can be viewed as a convenient tool
since NFA’s are sometimes easier to design and understand than equivalent DFA’s.

We say that an NFA and a DFA are equivalent if the DFA decides the language
of the NFA.

Theorem 1 Every NFA has an equivalent DFA.

Proof The idea is that the DFA will read the input one symbol at a time keeping
track of the states in which the NFA could be. Initially, the NFA is in its start state.
At any later moment, the NFA could be in any of a certain subset of its states. The
states of the DFA will correspond to subsets of the states of the NFA.

The behavior of the DFA is to update the set of current possible states of the
NFA. More precisely, suppose that the DFA is in state {q1, . . . , qk} and sees input
symbol a, where q1, . . . , qk are states of the NFA. And suppose that the behavior of
the NFA for state qi and symbol a is to go to any of the states in the set Qi. Then
the behavior of the DFA for that observable state is to go to state Q1∪ · · · ∪Qk. The
accepting states of the DFA are all the subsets that contain at least one accepting
state of the NFA. It is clear then that the DFA will accept if and only if the NFA
could have accepted. ut

We now present a more general deterministic simulation. We show that nonde-
terministic machines running in time t can be simulated by deterministic machines
running in time 2O(t). Therefore, for example, NP machines can be simulated in deter-
ministic exponential time. So, in a sense, NP machines correspond to a special kind
of exponential-time algorithm. As mentioned earlier, whether or not these algorithms
can be simulated more efficiently, perhaps in polynomial time, is an open question of
great importance.

4



Theorem 2 Every nondeterministic machine running in time t has an equivalent
deterministic machine that runs in time 2O(t).

Proof LetN be a nondeterministic machine and k the maximum number of behaviors
N has for any observable state. Every sequence of choices of N can be represented
as a string of numbers from {1, . . . , k}. We design a deterministic machine D that
simulates N on every possible sequence of choices, starting with those of length 1,
then those of length 2, 3, etc. If N accepts its input, it does so for a sequence of
choices of length no greater than t. If N does not accept its input, then D will know
that fact after having gone through all the sequence of choices of length at most t.

To carry out the simulation, D will divide its memory in two parts, one for the
current sequence of choices, the other for the contents of the N ’s memory. For each
sequence of choices, D will erase the N ’s memory, simulate N from its initial configu-
ration and then update the sequence of choices to the next one. All this can be done
in time O(t). Since the number of sequences of choices of length at most t is at most
kt+1, the entire simulation can be carried out in time 2O(t). ut

3. Different Perspectives on Nondeterminism

Earlier we provided two different ways in which one can view the computation of a
nondeterministic machine. One way referred to a magical power or all-powerful guide.
The other was in terms of parallel computation. In either case, we were still trying to
see a nondeterministic machine as a device that accepts or rejects inputs, a decider.
In this section, we present two alternative perspectives on nondeterminism in which
nondeterministic machines are no longer viewed as deciders. We will focus on the
case of NP.

First, recall that we can verify in polynomial time that a graph is 3-colorable, as
long as we are provided with a 3-coloring of the graph. A polynomial-time verifier for
3-colorability is a polynomial-time machine that given a graph and a string interprets
the string as a color assignment to the nodes of the graph and checks to see that
this color assignment is a 3-coloring. More generally, an algorithm V is a verifier for
language L if x ∈ L precisely when V accepts 〈x, c〉 for some c. c is called a certificate
or proof of membership for x. The running time of a verifier is measured only in terms
of the length of x. NP consists exactly of those languages that have polynomial-time
verifiers.

Second, suppose you are playing the following solitaire game with graphs. You
generate an arbitrary graph (never mind how) and try to 3-color it. You win if you

5



succeed, you lose if you fail. The graphs for which you can win are of course precisely
those that are 3-colorable. Now generalize the game as follows. Consider an arbitrary
nondeterministic machine. Each machine yields a different game. For a particular
machine, given an arbitrary input, you make the machine’s choices and you win if
the machine ends up accepting. The set of inputs for which you can win defines a
language. NP is the class of languages that can be defined by such games when played
on nondeterministic polynomial-time machines.

4. Exercises

1. Given a list of numbers and a number k, the subset sum problem is to determine
whether there a subset of the numbers that adds to exactly k. For example, the
answer is yes for 〈(3, 4, 12, 7, 4), 20〉 and no for 〈(3, 4, 12, 7, 4), 6〉.

(a) Show that the problem is in NP if the input numbers are given in binary.

(b) Show that the problem is in P if the input numbers are given in unary.

2. As defined in the lecture, a nondeterministic machine runs in time f if for
every possible sequence of choices, the machine halts after at most f steps. An
alternative definition is to say that a nondeterministic machine runs in time f
if for every possible sequence of choices that leads to accept, the machine halts
after at most f steps. In other words, for those sequence of choices that do
not lead to accept, the machine may take longer and is not even required to
halt. Show that the class NTIME(f) is the same using either definition if f is
assumed to be time constructible. That is, if given 1n, the binary representation
of f(n) can be computed in time O(f(n)).

3. (a) Define (in full detail) an NFA with 3 states for the following language: the
set of binary strings that contain 110 as a substring.

(b) Convert this NFA to an equivalent DFA by using the algorithm presented
in this lecture.

4. In an undirected graph, a set of nodes is called a clique if every two of its nodes
is connected by an edge. Given an undirected graph G and a number k, the
clique problem is to determine whether G contains a clique of size k and the
maximum clique problem is to determine whether the largest clique of G has
size k. While it is easy to see that clique is in NP, it is not known whether or
not maximum clique is. Show that if P = NP, then maximum clique is in P and

6



there is a polynomial-time algorithm that given a graph finds one of its largest
cliques. (Hint: Keep in mind that P is closed under complementation.)

5. Show that a language is in NP if and only if it has a polynomial-time verifier.

7


