
IAS/PCMI Summer Session 2000

Clay Mathematics Undergraduate Program

Basic Course on Computational Complexity

Lecture 6: Reductions and Completeness

David Mix Barrington and Alexis Maciel
July 24, 2000

1. Definitions

As mentioned in the first week, whether P equals NP is a question of great importance.
Since we cannot currently identify a single problem in NP that is not in P, can we
at least identify the “hardest” problems in NP? What would that mean? If such
problems exist, they should have the property that if they belong to P, then all
of NP should belong to P. Now how could that be realized? One way would be
for a polynomial-time algorithm for any of these “hardest” problems to give rise to
polynomial-time algorithms for any of the problems in NP. Such a mechanism is
formalized in the notion of a polynomial-time reduction.

A language A is polynomial-time reducible to a language B, written A ≤P B, if
there is a polynomial-time computable function f such that for every x, x ∈ A if and
only if f(x) ∈ B. Informally, f gives us an efficient way of transforming instances
of problem A into instances of problem B in such a way that we can solve one by
solving the other. The function f is called a reduction from A to B.

The idea of a reduction is actually a common and central concept in computer
science. For example, whenever we design a modular program for a certain problem,
we are reducing that problem to a collection of other problems.

Note that if A ≤P B and B ∈ P, then A ∈ P. Therefore, the fact that A reduces
to B implies that A is no harder than B, or equivalently that B is no easier than A, in
the sense that if B was easy (i.e., in P), then A would be easy too. This justifies the
notation A ≤P B. Note also that polynomial-time reducibility is a transitive relation:
if A ≤P B and B ≤P C, then A ≤P C.

We now say that a language is NP-complete if it is in NP and every other language
in NP reduces to it. If any NP-complete problem is in P, then all NP is in P. We will

1



therefore consider NP-complete problems as our formal notion of hardest problems
in NP.

NP-completeness is an interesting concept for both theoretical and practical rea-
sons. On the theoretical side, showing that a single NP-complete problem is in P
shows that P = NP. It can also be argued that since NP-complete problems are
the hardest problems in NP, then they are good candidates for trying to prove that
P ⊂ NP.

On the practical side, finding a polynomial-time algorithm for an NP-complete
problem would solve an open problem in which many researchers have already invested
a lot of time and energy. So discovering that a particular problem is NP-complete is
probably a good indication that trying to find a polynomial-time algorithm will not
be very productive. It is probably best to try to find a way around the problem or
simply settle for an exponential-time algorithm.

2. An NP-Complete Problem

Finding our first NP-complete problem will not be very difficult. However, this prob-
lem will be somewhat artificial. In the next lecture, we will exhibit more natural
NP-complete problems.

Given a string x of length n, a nondeterministic machine N and a string of t 1’s,
does N accept x in time t? We call this the NP evaluation problem.

Theorem 1 NP evaluation is NP-complete.

Proof First, we must show that NP evaluation is in NP. Given x, N and 1t,
we cannot blindly simulate N on x because we have no guarantee that N runs in
polynomial time. So we will simulate N on x while keeping a count of the number
of steps performed. As soon as that count exceeds t, the machine stops and rejects.
It is clear that N accepts x in time t following a certain sequence of choices if and
only if our simulator accepts following that same sequence of choices. In addition,
the simulator runs in linear time.

Now we must show that every language A in NP reduces to NP evaluation. Let N
be a polynomial-time machine for A. Suppose N runs in time nk. Then x ∈ A if and
only if N accepts x in time nk. Therefore, the reduction simply has to put together
x, a description of N , and the string 1n

k
. This can be easily done in polynomial time.

ut

2



3. A Reduction Between Two “Natural” Problems

In the next lecture, we will prove the NP-completeness of more natural problems,
not ones so obviously tied to NP. In fact, such NP-complete problems abound and,
in the great majority of cases, their NP-completeness is established by a reduction
from a known NP-complete problem. This relies on the fact that if A is NP-complete,
A ≤P B and B ∈ NP, then B is NP-complete. Note that all NP-complete problems
are equivalent to each other, with respect to polynomial-time reductions, in the sense
that they reduce to each other.

In the meantime, as a warm-up for all this, we end this lecture with an example of a
reduction between two of these natural problems. A Boolean formula is an expression
involving Boolean variables and Boolean operations. The Boolean variables can take
as values TRUE or FALSE (or 0 or 1). For the moment, we will consider the Boolean
operations AND, OR and NOT, symbolically written as ∧, ∨ and ¬. ¬x is also often
written as x. For example, (x1 ∨ x2) ∧ (x1 ∨ x3) is a formula.

A Boolean formula is satisfiable if it evaluates to TRUE for some truth assignment
of the variables. Given a formula, the satisfiability problem (SAT) is to determine
whether the formula is satisfiable.

3SAT is a special case of SAT in which we want to accept only formulas of a
certain type. A CNF formula is a conjunction of disjunctions of literals, where a
literal is either a variable or its negation. The above formula is an example of a CNF
formula. The disjunctions are called clauses. A 3CNF formula is one in which all
clauses have exactly three literals. Given a 3CNF formula, 3SAT is the problem of
determining whether the formula is satisfiable.

As defined in an earlier exercise, in an undirected graph, a set of nodes is called a
clique if every two of its nodes is connected by an edge. Given an undirected graph G
and a number k, the CLIQUE problem is to determine whether G contains a clique
of size k.

Even though these problems appear to be completely unrelated, we show here
that 3SAT reduces to CLIQUE.

Theorem 2 3SAT reduces to CLIQUE.

Proof We need to transform a 3CNF formula into a graph. There will be a node in
the graph for each literal in the formula. There will be edges between every pair of
nodes except (1) there are no edges between nodes that are associated with the same
clause, and (2) there are no edges between nodes that correspond to contradictory

3



literals such as x1 and x1. It is clear that this graph can be constructed in polynomial
time.

Let k be the number of clauses in the formula. We claim that the formula is
satisfiable if and only if the graph has a clique of size k. To prove this claim, first
suppose that the formula is satisfiable. Choose one true literal for each clause and
consider the set of corresponding nodes. That set has size k. Any two nodes in
this set cannot be associated with the same clause. And they cannot correspond to
contradictory literals since they both correspond to literals that evaluate to TRUE.
Therefore, there must be an edge between any two nodes in the set and we have a
clique of size k.

Now suppose that the graph has a clique of size k. All the nodes in this clique
must be associated with different clauses. Choose an assignment to the variables that
makes the corresponding literals true. This is possible since there can be no nodes
in the clique that correspond to contradictory literals. We now have an assignment
that satisfies makes one literal true in each clause so the formula is satisfied. ut

4. Exercises

1. Show that A ≤P B if and only if A ≤P B.

2. Which languages would be NP-complete if NP was equal to P? (Hint: “All of
P” is not the right answer.)

3. A Boolean formula is a tautology if it evaluates to 1 for all truth assignments.
Let TAUT be the set of all tautologies. Show that SAT reduces to TAUT, the
complement of TAUT.

4. Given a binary string, the MAJORITY problem is to determine whether that
string contains at least as many 1’s as 0’s. Show that MAJORITY reduces to
the following version of the graph reachability problem: given a directed graph
G, two nodes s and t and a number k, determine whether there is a path of
length at most k from s to t in G.

5. Show that graph reachability reduces to SAT.

6. Show that SAT is equivalent to 3SAT. (Hint: To show that SAT reduces to
3SAT, rewrite the formula using binary operations only. Then, viewing the
formula as a circuit, write a 3CNF formula that essentially expresses the fact
that the values on all the wires are consistent with the gates.)

4



7. Show that CLIQUE reduces to SAT. (Hint: For any k, there are logspace-
uniform NC1 circuits that can take n Boolean variables and determine if at
least k of them are 1.)

5


