
IAS/PCMI Summer Session 2000

Clay Mathematics Undergraduate Program

Basic Course on Computational Complexity

Lecture 8: Complete Problems for Other

Complexity Classes

David Mix Barrington and Alexis Maciel
July 26, 2000

In our first week of lectures, we introduced the following complexity classes and
established this sequence of inclusions:

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ NC ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

(Once again, all the circuit classes below L must be logspace uniform while those
between NL and P can either be all logspace uniform or all P uniform.) We also
pointed out that among all these inclusions, only one is known to be strict: the first
one.

In the preceding two lectures, we have examined the concept of NP-completeness
and argued its relevance to the question of whether P equals NP. The NP-
completeness of a problem can also be viewed as evidence that the problem is not in
P, but this depends on how strongly one believes that P 6= NP. In this lecture, our
goal will be to identify complete problems for some of the other complexity classes.

1. NL-Completeness

Before defining the notion of NL-completeness, we first need to decide on the kind
of reducibility that would be appropriate. Polynomial-time reducibility would not be
very useful because NL ⊆ P, which implies that the reduction itself would be able to
solve any problem in NL. As a consequence, every language in NL (except ∅ and Σ∗)
would be NL-complete.

A better choice is a kind of reducibility that corresponds to a subclass of NL. We
also want this subclass X to be closed under function composition so that if A ≤X B
and B ∈ X, then A ∈ X. This also guarantees that the reducibility is transitive (if
A ≤X B and B ≤X C, then A ≤X C) and allows us to show the NL-completeness of a

1



problem by a reduction from some other problem known to be NL-complete (because
if A is NL-complete, A ≤X B, and B ∈ NL, then B is NL-complete).

A good choice for NL is the notion of logspace reducibility, denoted “≤L”. We
then say that a language is NL-complete if it is in NL and every other language in
NL logspace reduces to it. This notion of completeness allows us, in particular, to
investigate the relationship between L and NL.

As in the case of NP-completeness, it is not difficult to come up with an NL-
complete problem. Given a string x of length n, a nondeterministic machine N and
a string of f 1’s, does N accept x in space log f? We call this the NL evaluation
problem.

Theorem 1 NL evaluation is NL-complete.

Proof To show that NL evaluation is in NL, simulate N on x while keeping a count
of the amount of space used. If ever that count exceeds log f , the machine stops and
rejects. N accepts x in space log f following a certain sequence of choices if and only
if the simulator accepts following that same sequence of choices. The simulator runs
in space O(log f), which is logarithmic in the length of its input.

Showing that every language A in NL reduces to NL evaluation is easy. Suppose
N decides A in c log n space. Given an input x of length n, the reduction simply
outputs x, a description of N , and the string 1n

c
. This can easily be done in O(log n)

space. ut

Can we come up with a more natural NL-complete problem? It turns out that
we have already seen such a problem and implicitly used its NL-completeness in our
study of NL and space-bounded computation in general. We are referring of course
to graph reachability.

Theorem 2 Graph reachability is NL-complete.

Proof We already know that graph reachability is in NL. IfN is any nondeterministic
machine running in space O(log n), then given an input x, the reduction simply
outputs the graph of configurations of N on x. This can be done in logarithmic
space. ut

2



2. L-Completeness

One notion of reducibility that makes sense for the class L is that of logspace-uniform
NC1 reducibility. We could again come up with an artificial L-complete problem.
Instead, we will show right away that a certain version of graph reachability is L-
complete. This will be the out-degree one version of graph reachability, where we
want to accept only those graphs that are of out-degree one and contain a path from
s to t.

Theorem 3 The out-degree one version of graph reachability is L-complete.

Proof First note that verifying whether a directed graph is of out-degree one can be
done in O(log n) space. Then, to determine whether there is a path from s to t, it is
simply a matter of following the unique path out of s. Therefore the problem is in L.

Now consider an arbitrary deterministic machine M running in space O(log n).
The reduction will be a logspace-uniform NC1 circuit that given x, computes the
graph of configurations of M on x. That graph will be of out-degree one because M is
deterministic. For each pair of configurations, determining whether one configuration
leads to the other can be done by examining a single symbol of x. A logspace machine
can run through all the possible pairs of configurations and construct a simple circuit
that accesses the appropriate input symbol. This shows that every problem in L
reduces to the out-degree one version of graph reachability. ut

3. NC1-Completeness

Since we are talking about logspace-uniform NC1, we can define NC1-completeness
in terms of logspace-uniform AC0 reductions. One problem that is clearly hard for
NC1, in the sense that every problem in NC1 reduces to it, is the Boolean formula
value problem (BFVP): given a Boolean formula φ and values for the variables of φ,
does φ evaluate to 1? If C is a logspace-uniform NC1 circuit, then there is logspace
machine that given any input of length n will output the formula equivalent to C.
That machine can then be modified to output instead an AC0 circuit (actually, an
NC0 circuit) that given an input x, outputs x together with a formula equivalent to
C. This logspace-uniform AC0 circuit performs the required reduction.

What is not clear, however, is whether BFVP in is NC1. Given a formula φ and an
input x, we cannot simply say “use the NC1 circuit equivalent to φ on input x”. We
need a single circuit that can be used to evaluate every formula. Although we won’t

3



prove it here, it is known that BFVP is in logspace-uniform NC1 and thus BFVP is
complete for logspace-uniform NC1.

In Lecture 5 of the Advanced Course, we saw that every language in NC1 can
be decided by a family of polynomial-length programs over the group S5. This gives
us another NC1-complete problem. The word problem over S5 is defined as follows:
given a sequence of elements x1, . . . , xn and another element y, all from S5, determine
whether the product x1 · · ·xn is equal to y.

Theorem 4 The word problem over S5 is complete for logspace-uniform NC1 under
logspace-uniform AC0 reductions.

Proof The product of n elements from any finite group can be easily computed by
a simple binary tree of depth O(log n). Which implies that the word problem over
any finite group is in logspace-uniform NC1.

Now let L be any language in logspace-uniform NC1. Then, as shown in the
Advanced Course, L is decided by a logspace-uniform family of polynomial-length
programs over S5. Given an input x, we can construct, in logspace, an AC0 circuit
(actually, an NC0 circuit) that outputs the yield of the appropriate program together
with the permutation (12345). Since the program evaluates to (12345) precisely when
x is in L, this circuit reduces L to the word problem over S5. ut

As noted in the Advanced Lectures, polynomial-length programs over any non-
Abelian group can compute all of NC1. It follows that the word problem for any
non-Abelian simple group is complete for NC1.

4. PSPACE-Completeness

For the class PSPACE, we go back to polynomial-time reductions (although what
follows also holds under finer notions of reducibility). We define here a problem that
is PSPACE-complete under polynomial-time reductions and leave the proof of its
completeness to the exercises. The key ideas needed in this proof will come up again
in Lecture 11 when we relate PSPACE to the polynomial-time hierarchy.

A formula is fully quantified if all its variables are bound by some quantifier.
(Such a formula is also called a sentence.) A formula is in prenex normal form if it is
a sequence of quantifiers followed by a quantifier-free formula. If φ is a formula with no
quantifiers that involves only the variables x1 x2 and x3, then ∃x1∀x2∃x3φ(x1, x2, x3)

4



is an example of a formula that is both fully quantified and in prenex normal form.
The quantified Boolean formula problem (QBF) is to determine whether a given fully
quantified Boolean formula in prenex normal form is true or false.

Another way to look at this problem is to view it as a more general form of the
formula satisfiability problem (SAT). With SAT, we are given a formula φ(x1, . . . , xn)
and want to know whether ∃x1 . . . ∃xnφ(x1, . . . , xn) is true. With QBF, we simply
allow a more general type of quantification.

It is not hard to see that QBF is in PSPACE. If the formula is of the form ∃x1ψ,
then recursively evaluate ψ with x1 replaced by 0 and with x1 replaced by 1. Accept
if either of these last two formulas is true. In the case of the ∀ quantifier, accept
if both are true. The depth of the recursion is the number of quantifiers. For each
level of the recursion, we need to store the value of one variable, except at the last
level, where we evaluate a formula in polynomial-time. In total, this algorithm uses
a polynomial amount of space.

As mentioned earlier, the exercises ask you to show that QBF is PSPACE-
complete. A key idea is the technique we used in simulation of polynomial-time
machines by circuits of polynomial size. A second idea is the reduction of CIRCUIT
SAT to SAT.

5. Exercises

1. Consider the following problem: given a sequence of n×n Boolean matrices and
two indices i and j, what is the value of entry i, j in the product of the matrices?
Define the product of two Boolean matrices as we did earlier: C = A × B if
Cij =

∨n
k=1 AikBkj. Show that this iterated matrix multiplication problem is

NL-complete.

2. Show that graph reachability is NL-complete under finer notions of reducibility,
i.e., reducibilities that correspond to subclasses of L. How far can you go?

3. Given a directed graph G and a node s, say that G has a fork from s if there
is a path from s to some node t that has out-degree greater than 1. Show that
the problem of determining whether G has a fork from s is complete for L.

4. A directed graph is levelled if its vertices can be divided into sets l1, . . . , ld such
that every edge in the graph goes from a vertex at one level to a vertex at the
next level. The width of such a graph is the size of the largest level. For every
number k, consider the following problem: given a levelled graph of width k, a

5



node s ∈ l1 and a node t ∈ ld, is there a path from s to t? Assume that the
vertices of the graph are presented level by level. Show that this problem is
NC1-complete if k ≤ 5.

5. Show that the circuit evaluation problem is complete for P under logspace re-
ductions.

6. Show that planar circuit evaluation is P-complete. This is the circuit value
problem but restricted to planar circuits, i.e., circuits that can be drawn in the
plane with no wire crossings. Assume that the input contains an embedding
of the circuit in the plane, so you can easily verify whether the given circuit
is planar. (Hint: Design a planar subcircuit for simulating the crossing of two
wires.)

7. Show that QBF is PSPACE-complete.

6


