
IAS/PCMI Summer Session 2000

Clay Mathematics Undergraduate Program

Basic Course on Computational Complexity

Lecture 10: AC0 Circuits Cannot Compute

PARITY

David Mix Barrington and Alexis Maciel
July 28, 2000

Recall the sequence of class containments we have established:

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ NC ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

The hierarchy theorems of the preceding lecture imply that one of the containments
between NL and PSPACE and one of the containments between P and EXP must be
strict. But we do not know which one (or which ones). In this lecture, we show that
AC0 ⊂ NC1 thus establishing that a specific inclusion in the above sequence is strict.
And this is the only one which is currently known to be strict.

The precise result we will prove is that the PARITY language cannot be decided
by AC0 circuits, even if they are allowed to be of size 2n

o(1)
, even if they are allowed

to include gates that test whether the sum of their inputs is non-zero modulo 3, and
even if they are allowed to be completely non-uniform. Since the NC1 parity circuits
are very uniform, this is more than enough to separate AC0 from NC1 under any kind
of uniformity condition.

1. Lower Bounds via Polynomial Representations

Consider multivariate, multilinear polynomials over Z3. Multilinear means that no
variable can appear with exponent larger than 1. For example, 1 + 2x1 + x1x2x3

is one such polynomial. When multiplying these polynomials, we reduce the result
using the identities x2

i = xi. For example, multiplying the above polynomial by x2

gives x2 + 2x1x2 +x1x2x3. From now on, by polynomial over Z3, we will always mean
multivariate, multilinear polynomials over Z3.

Each n-variable polynomial over Z3 clearly defines a function from {0, 1}n to
Z3. For example, 1 − x1 defines NOT(x1), x1 · · ·xn defines AND(x1, . . . , xn) and

1

1 − ((1 − x1) · · · (1 − xn)) defines OR(x1, . . . , xn). It is also true that every function
can be defined by some polynomial (see the exercises). Since the number of functions
and polynomials is the same, 32n , we cannot have that two polynomials define the
same function. Therefore, each function is defined by a unique polynomial and we
say that this polynomial represents the function.

We can also talk of the degree of a function: it is the degree of its polynomial
representation. For example, the above polynomials imply that NOT has degree 1
while AND and OR both have degree n. Another example is given by the function
MOD3. In general, MODm(x1, . . . , xn) is defined to be 1 if and only if the sum of
its inputs is non-zero modulo m. So MOD2, for example, is simply the characteristic
function of the PARITY language. The degree of MOD3 is 2 because this function
is represented by the polynomial (x1 + · · · + xn)2 over Z3, using the fact that a2 is
congruent to 1 modulo 3 if and only if a is not congruent to 0 modulo 3.

Now what is the degree of MOD2? The easiest way to figure this out is to set
zi = 1 − 2xi. This converts 0 and 1 to 1 and −1, respectively. Then z1 · · · zn is 1 if
MOD2 is 0, and −1 is MOD2 is 1. Since x = 1

2
(1− z) does the opposite conversion of

1/−1 values to 0/1 values, we have that MOD2 can be written as 1
2
(1 − z1 · · · zn), a

polynomial of degree n in both the zi’s or the xi’s.

Note that what happened in the preceding paragraph is that we found the polyno-
mial representation of MOD2 when viewed as a function with 1/-1 values and output
and translated that representation into one for MOD2 when viewed as a function in
the 0/1 setting. In fact, when we talk about the MOD2 function, we really mean the
Boolean function defined by MOD2(x1, . . . , xn) = TRUE if and only if the number of
TRUE xi’s is odd. Whether FALSE and TRUE are represented as 0 and 1 or as 1
and −1 is really secondary. For our purposes, the key point to keep in mind is that
the degree of a function is the same in either the 0/1 or 1/−1 setting.

We have shown that NOT and MOD3 have constant degrees while AND, OR
and MOD2 have degree n. What happens when a constant-depth circuit is made up
entirely of gates that compute constant-degree functions? Since degrees at most mul-
tiply when polynomials are composed, it is not hard to see that the circuit computes
a constant-degree function. In particular, it cannot compute AND, OR or MOD2. In
fact,

Proposition 1 If d = o(log n), then depth-d circuits with NOT and MOD3 gates
cannot compute AND, OR or MOD2.

We say that constant-degree functions are easy while functions of degree n are hard.

2

The above proposition is our first example of a lower bound established by using
the degree of polynomial representations. Can we use the same idea to show that
MOD2 cannot be computed by AC0 circuits? The obvious problem is that AC0

circuits contain both easy and hard gates, so they can compute hard functions.

What we are going to do is show that the functions AND and OR are, in fact, not
that hard, in the following sense:

Lemma 2 Let f1, . . . , fm be functions of a common input x. For every k, there is
a polynomial p of degree 2k such that when x is chosen at random (with each value
equally likely), the probability that p(f1(x), . . . fm(x)) 6= OR(f1(x), . . . fm(x)) is no
greater than 1/2k.

The same obviously holds for the AND function. We say that these functions can be
approximated by polynomials of degree k with probability of error no greater than
1/2k.

We will then use this to show that if a small-depth circuit with NOT, AND,
OR and MOD3 gates is not too large, then the function it computes can be well-
approximated by a polynomial of degree o(

√
n). More generally,

Lemma 3 If d = o(log n) and C is depth-d circuit with an arbitrary number of

constant-degree gates and 2o(n
1/2d) gates that can be well-approximated in the sense of

Lemma 2, then there is a polynomial p of degree o(
√
n) such that when x is chosen

at random, the probability that p(x) 6= C(x) is o(1).

Finally, to get our circuit lower bound, we will show that MOD2 is harder than
that: it cannot be approximated by such polynomials.

Lemma 4 If p is a polynomial of degree o(
√
n), then, when x is chosen at random,

the probability that p(x) 6= MOD2(x) is 1/2− o(1).

Putting the last two lemmas together, we get our main result:

Theorem 5 If d = o(log n) and C is depth-d circuit with an arbitrary number of

constant-degree gates and 2o(n
1/2d) gates that can be well-approximated in the sense of

Lemma 2, then, when x is chosen at random, the probability that C(x) 6= MOD2(x)
is 1/2− o(1).

3

Corollary 6 If C is a depth-d circuit with NOT, AND, OR and MOD3 gates and
C computes MOD2, then either d = Ω(log n) or C contains 2Ω(n1/2d) AND and OR
gates.

Corollary 7 If C is a constant-depth circuit with NOT, AND, OR and MOD3 gates
computing MOD2, then C contains 2n

Ω(1)
AND and OR gates.

2. The OR Function Is Not That Hard

In this section, we prove Lemma 2.

Proof (Of Lemma 2.) Fix an input x and denote by f(x) the sequence
f1(x), . . . , fm(x). Let h = (c1f1 + · · · cmfm)2 be a polynomial with variables f1, . . . , fm
and coefficients ci randomly chosen from {0, 1} (with each value equally likely). If
OR(f(x)) = 0, then h(f(x)) will always be 0, so the probability that h(x) 6= OR(f(x))
is 0. If OR(f(x)) = 1, then fi(x) = 1 for some i. For every setting of the other co-
efficients, there is at most one value of ci that can cause h(f(x)) to evaluate to 0.
Therefore, the probability that h(f(x)) 6= OR(f(x)) is at most 1/2.

Now let g = OR(h1, . . . , hk) be the OR of k independent copies of h. If OR(f(x)) =
0, then all the hi’s evaluate to 0, so the probability that g(f(x)) 6= OR(f(x)) is 0. If
OR(f(x)) = 1, then the probability that g(f(x)) 6= OR(f(x)) is at most 1/2k. Note
that g has degree 2k (in terms of the fi’s).

We have shown that for every x, when the degree-2k polynomial g is chosen at
random, then the probability that g(f(x)) 6= OR(f(x)) is at most 1/2k. This implies
that there is a degree-2k polynomial g such that when x is chosen at random, then
the probability that g(f(x)) 6= OR(f(x)) is at most 1/2k. This can be established by
a simple averaging argument (see the exercises). The polynomial g is the polynomial
we were looking for. ut

Using this, we now prove Lemma 3 that circuits with not too many easy and “not
too hard” gates can be well-approximated by polynomials of degree o(

√
n).

Proof (Of Lemma 3.) Suppose the circuit contains 2r gates that are not easy but
can be well-approximated in the sense of Lemma 2. Let k = r + n1/4d. Note that
k = o(n1/2d). Compose all the polynomials associated with each of the gates. The
degree of the resulting polynomial p is at most (2k)d = o(

√
n). In the worst case, all

these polynomials disagree with their gates for different values of x. Therefore, the
probability that p(x) 6= C(x) is at most 2r(1

2
)k = (1

2
)n

1/4d
= o(1). ut

4

3. The MOD2 Function Is Much Harder

In this section, we prove Lemma 4, that the MOD2 function cannot be well-
approximated by polynomials of degree

√
n. First, we show that in the 1/−1 setting,

every function can be represented in terms of the MOD2 function and two polynomials
of degree at most n/2.

Lemma 8 In the 1/−1 setting, every function f can be written as gMOD2 +h where
g and h both have degree at most n/2.

Proof Take a polynomial p representing f . The function h will consist of all the
monomials in p that are of degree at most n/2. Now consider a monomial in p
that has degree greater than n/2. Then that monomial can be written as

∏
i∈I zi =

(z1 · · · zn)
∏
i/∈I zi. The various monomials

∏
i/∈I zi will be the monomials of g. Note

that the degree of each of these monomials is at most n/2. ut

Proof (Of Lemma 4.) Convert p to a polynomial representing MOD2 in the 1/−1
setting. p still has degree o(

√
n) and its probability of error in representing the MOD2

function is the same. Let D be the values of x where p(x) = MOD2(x). We want to
show that |D|/2n = 1/2 + o(1).

By the previous lemma, every function can be written as gMOD2 +h where g and
h both have degree at most n/2. This implies that every function with inputs in D,
can be written as q = gp + h where g and h both have degree at most n/2. Note
that q has degree at most n/2 + o(

√
n). Therefore, all this implies that the number

of functions on D cannot be larger than the number of polynomials of degree at most
n/2 + o(

√
n), that is,

3|D| ≤ 3
∑n/2+o(

√
n)

d=0 (nd).

It is well-known that
∑n/2+o(

√
n)

d=0

(
n
d

)
= (1/2+o(1))2n. Therefore, |D|/2n = 1/2+o(1).

ut

4. Lower Bounds for Larger Classes

In this and the previous lecture, we managed to prove some lower bounds. We
established the Space Hierarchy Theorem by the diagonalization technique and we
proved a lower bound for AC0 by using low-degree polynomial representations. But
still, in our chain of class containments,

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ NC ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP,

5

only one inclusion is known to be strict: AC0 ⊂ NC1. Can we use these two lower
bound techniques to separate more classes?

For example, the Time Hierarchy Theorem implies that P ⊂ EXP. Can we push
the technique further and show that P ⊂ NP? The answer is no. Without getting
into the details (see Section 9.2 of Sipser’s textbook for that), diagonalization, as well
as other techniques based on machines simulating other machines, is a technique that
relativizes, meaning that whatever is established also holds relative to any oracle.
And it has been shown that P = NP relative to some oracles, and P ⊂ NP relative to
others. Therefore, the P versus NP question will not be solved by such techniques.

In fact, these limitations of the diagonalization method were some of the original
motivation for studying circuits classes such as AC0. Since P ⊆ non-uniform PSIZE,
to show that P 6= NP, it is enough to show that NP 6⊆ non-uniform PSIZE. And
it seemed like circuits would provide a setting that would lead more easily to the
discovery of radically new lower bound techniques that do not relativize.

The plan then was to prove lower bounds for small classes and work our way up.
AC0 lower bounds were the starting point. However, proving lower bounds even for
seemingly limited circuit classes has proved to be very difficult. In this lecture, we
actually showed that constant-depth, polynomial-size circuits with unbounded fan-in
NOT, AND, OR and MOD3 gates cannot compute the MOD2 function. Such circuits
define the class ACC0[3]. The argument can be generalized to show that ACC0[p]
circuits cannot compute MODq if p and q are distinct primes (see the exercises). But
no one knows how to push this further to a lower bound for ACC0[m] circuits when
m is composite. One obstacle is that Zm is no longer a field and we can no longer
rely on basic facts such as am−1 is congruent to 1 modulo m if and only if a is not
congruent to 0 modulo m.

Leaving aside circuits with modular gates, can we prove lower bounds for constant-
depth, polynomial-size circuits with unbounded fan-in NOT, AND, OR and MAJOR-
ITY gates? These circuits define the class TC0. (MAJORITY is the set of x’s that
have a majority of 1’s.) The class TC0 has proved to be surprisingly powerful. For
example, let ACC0 =

⋃
m≥2 ACC0[m]. While it is easy to see that ACC0 ⊆ TC0, it

is also true that non-uniform, depth-3 TC0 circuits of size nlogO(1) n can compute all
of ACC0. And non-uniform depth-3 TC0 circuits, as well as DLOGTIME-uniform
TC0 circuits (as shown in the Advanced Course), can compute significant arithmetic
functions such as DIVISION and ITERATED MULTIPLICATION.

When considering proving lower bounds for TC0, we run into another difficulty.
All the lower bound arguments that have been used so far on circuits have been
characterized as natural proofs. Again without getting into the details, natural proofs
cannot prove lower bounds for classes such as P or even TC0, unless some widely

6

believed conjectures turn out to be false. Therefore, radically new ideas seem to be
once again required.

5. Exercises

1. Show that every function from {0, 1} to Z3 can be defined by some polynomial
over Z3.

2. Show that the binary AND function can be computed by a MOD3 gate of
constant fan-in. Use this to show that all of NC1, including the AND, OR and
MOD2 functions, can be computed by constant fan-in, depth-O(log n) circuits
with NOT and MOD3 gates.

3. Show that constant-depth circuits with NOT gates, unbounded fan-in MOD3

gates and one level of AND, OR and MOD10 gates of fan-in o(n) can not compute
the AND, OR or MOD2 functions.

4. Say that a polynomial p over Z3 weakly defines a Boolean function f if p(x) = 0
when f(x) = FALSE and p(x) = 1 or 2 when f(x) = TRUE. Show that no
polynomial of degree less than n/2 can weakly define the MOD2 function.

5. Suppose that for every x, when g is chosen at random, the probability that
g(x) 6= OR(f(x)) is at most 1/2k. Show that there is g such that when x is
chosen at random, then the probability that g(x) 6= OR(f(x)) is at most 1/2k.

6. Explain why
∑n/2+o(

√
n)

d=0

(
n
d

)
= (1/2 + o(1))2n. (Hint: Consider the normal

approximation to the binomial distribution.)

7. Generalize the lower bound argument presented in this lecture to show that
ACC0[p] circuits cannot compute MODq if p and q are distinct primes. (Hint:
Work with polynomials over a finite field of characteristic p with a qth root of
unity.)

7

