
IAS/PCMI Summer Session 2000

Clay Mathematics Undergraduate Program

Basic Course on Computational Complexity

Lecture 14: IP = PSPACE

David Mix Barrington and Alexis Maciel
August 3, 2000

1. Overview

We have just defined interactive proof systems and the class IP of languages definable
by poly-time interactive proof systems. We showed that such systems can be simu-
lated by deterministic machines with polynomial space, so that IP ⊆ PSPACE. Here
we present the theorem of Shamir that in fact IP = PSPACE. Thus, surprisingly,
interactive proofs with a randomized poly-time Bob have the same power to define
languages as do alternating machine games with a clever Bob.

• We begin with an overview of the proof, which will center on a randomized
version of the Savitch game from Advanced Lecture 11. Alice will begin by
asserting that a certain path exists in the configuration graph of the poly-space
machine. This assertion will be placed in the form of a multilinear polynomial
in poly-many variables over the finite field Zp for some prime p. The remainder
of the game will consist of successive links from one assertion about such poly-
nomials to another, concluding with one that can be verified. At each link we
will ensure that Alice can always move to the next assertion if she is telling the
truth, and has only a tiny chance of fooling Bob by moving from a false to a
true assertion.

• We set up the construction of an interactive proof system to define the language
of an arbitrary PSPACE machine. We represent the configurations of our ma-
chine M as strings of ` bits, where ` is polynomial in n. The key predicate
PATHi(α1, . . . , α`, β1, . . . , β`) will have value 1 if there is a path of length ex-
actly 2i from configuration α to configuration β, and have value 0 if there is no
such path. We give a recursive definition of these predicates for all i from 0 to
`.

1



• We define a multilinear polynomial over the finite field Zp for every path pred-
icate, with 2` variables ranging over Zp. When these variables all take values
from {0, 1}, the polynomial will have a value from {0, 1} matching the value
of the boolean predicate. But the polynomial will be defined with other sets
of values, and assertions about its behavior on such inputs will be crucial to
our proof. We establish here that the PATH0 polynomial can be evaluated on
arbitrary inputs in Zp by a poly-time deterministic machine.

• We define the general notion of an ε-link between assertions, an interactive
protocol such that a true assertion leads to a true one (under optimal play by
Alice) with probability one, and a false assertion leads to a false one (whatever
Alice does) with probability 1 − ε. We describe the structure of the O(`2) ε-
links we will use to connect Alice’s initial assertion (equivalent to “x ∈ A”)
with a final assertion about the PATH0 polynomial that can be verified in P.
We summarize how this will prove that IP ⊆ PSPACE.

• Finally we present and justify the series of ε-links used in the protocol, particu-
larly the assertions about hybrid polynomials needed to simulate Alice’s moves
in the Savitch game.

2. Overview of the Proof

We need to construct an interactive proof system where Alice can convince Bob that
x ∈ A, where A is an arbitrary PSPACE language, iff this is actually true. Sipser and
Papadimitriou each present versions of Shamir’s original proof, where Alice solves an
instance of the PSPACE-complete problem QBF. In this presentation, which we have
gratefully taken from Steven Riudich, we will have Alice and Bob play a variant of
the Savitch game that we used to prove PSPACE ⊆ AP in Basic Lecture 11.

Alice will begin with an assertion that a long path exists in the configuration
graph of the machine M on input x. In the Savitch game, she presents Bob with an
alleged midpoint of this path and Bob chooses either the first half or the second half
of the alleged path to dispute. In one round we move from an assertion that a path
exists to an assertion that another path exists, where the second is half the length of
the first. In polynomially many rounds we reduce to the case of a single edge in the
configuration graph, whose existence can be determined in P.

The new game will have the same structure as the Savitch game but deal with
formally different objects. We will arithmetize the predicates about paths by replacing
them with multilinear polynomials over some finite field Zp. These polynomials will

2



have the same value as the path predicate (0 or 1) if their inputs are all 0’s and 1, and
will have other values on other inputs. In the new game, Alice’s original polynomial
will deal with paths of length 2`, and in the first round she will eventually replace her
assertion about the original polynomial by an assertion about the polynomial dealing
with paths of length 2`−1. But, crucially, this assertion will be about the value of this
polynomial on some random setting of the variables to values in Zp, a setting which
in all probability says nothing about paths at all. But after ` such rounds, Alice’s
assertion will be about the polynomial dealing with paths of length 20 = 1, and we
will ensure that this assertion can be verified in P as before.

At each stage, if Alice’s assertion is true, she can move so that with certainty
the resulting assertion is also false. If her assertion is false, we can assure that the
resulting assertion is true only with probability less than some ε, which can be an
inverse polynomial. This is called an “ε-link” between the two assertions. We will
have p(n) ε-links in our entire protocol, yielding a protocol where Bob’s probability of
being fooled by a false original assertion from Alice is at most εp(n), which by choice
of ε we can make less than any given constant. We thus are building an interactive
proof system demonstrating that the language A is in IP. Since A was an arbitrary
PSPACE language, we will have shown PSPACE ⊆ IP and thus (with a result from
Basic Lecture 13) that IP = PSPACE.

3. The Path Predicates For the Machine

We represent configurations of our machine M by strings of ` bits, where ` is a
polynomial in n. For any number i and any two configurations α = (α1, . . . , α`) and
β = (β1, . . . , β`), we define the boolean predicate PATHi(α, β) to be true iff there
is a path in the configuration graph of M of length exactly 2i from α to β. Note
that PATHi refers to paths of length 2i, a convention we adopt to reduce the level of
subscripting and superscripting in our proof.

The predicate PATH0 is true of two configurations α and β iff β is the unique
successor configuration of α in M , given the specific input x. By our conventions
for machines, the correct successor for α agrees with α except on O(1) bits, those
specifying the state, the head positions, and the contents of the O(1) memory bits
that are to be affected by heads. (An interesting technicality: so that we will not
have to worry about carries in the numbers representing the head positions, we can
store them in unary. We have the room, as the space needed will still be polynomial.)

The predicate PATH0 can be represented as the OR, over the polynomially many
choices of head positions, of the AND of formulas asserting the equality of the unaf-

3



fected bits and a formula referring to a specific set of O(1) bits. We will use this fact
below in designing a polynomial to arithmetize PATH0 so that we can evaluate it in
P even when its inputs are in Zp.

For each i, PATHi+1(α, β) is true iff there is a configuration γ such that
PATHi(α, γ) and PATHi(γ, α) are both true. We will use this fact in the follow-
ing inductive definitions of the PATHi predicates:

PATHi+1(α, β)↔
∨

γ1=0,1

. . .
∨

γ`=0,1

PATH(α1, . . . , α`, γ1, . . . , γ`)∧PATH(γ1, . . . , γ`, β1, . . . , β`)

The predicate PATH`(s, t), where s is the unique starting configuration and t is
the unique accepting final configuration, will be the starting point of our proof, as
Alice’s initial assertion is that this equals 1. Note that we must arrange that M will
halt in exactly 2` steps rather than at most 2`, because PATH` is defined in terms
of paths of exactly that length. Also, we must insist that the machine M clean up
its memory and put its heads in some standard places when it accepts, so that the
accepting configuration will be unique.

4. Arithmetizing the Path Predicates

Along with these predicates we will define a family of multilinear polynomials over a
field Zp, also called PATHi and also taking 2` variables α1, . . . , α`, β1, . . . , β`. When
each of the 2` inputs to one of these polynomials is from the set {0, 1}, we insist that
the polynomial take on the value 0 or 1 according to the value of the corresponding
boolean predicate. The set of multilinear polynomials over 2` variables is a vector
space of dimension 22` over Zp, so it turns out that we have just enough degrees of
freedom to specify the value of the polynomial on the 22` boolean settings. (In an
exercise you are asked to verify this.)

The prime p. by the way, will come from a range to be specified later. The prover
Alice will be responsible for choosing it and giving Bob a proof that it is prime. (Such
proofs exist by an exercise in Basic Lecture 11.)

Lemma 1 The polynomial PATH0(α1, . . . , α`, β1, . . . , β`) can be evaluated in polyno-
mial time (in n or `) even if the αi’s and βi’s take on arbitrary values in Zp.

Proof Remember that the predicate PATH0 is the OR, over the possible positions
of the heads, of the AND of predicates asserting that the unaffected bits of α and β

4



are equal, and a specific formula saying that the affected O(1) bits change according
to the rules of M . Since the OR is over disjoint possibilities, we can define the
polynomial PATH0 to be the sum, over the possible head positions, of the product of
an equality polynomial for each unaffected bit position i, and a polynomial returning
the right values when the affected O(1) bits have the right values.

The equality polynomial for αi and βi is just 1 − αi − βi + αiβi. This takes the
correct value when both inputs are boolean, and some value we don’t know how to
interpret in all other cases.

Let’s temporarily refer to the affected O(1) bits of α as a1, . . . , ak and the matching
bits of β as b1, . . . , bk. For each sequence of k boolean values for the a’s, there is a
unique proper sequence of boolean values for the b’s. For each of these pairs, we can
define a multilinear polynomial in these 2k variables that evaluates to 1 if they take
the correct 2k values and to 0 if they take on any incorrect sequence of all boolean
values. (This is the product of ai or bi when they should be 1 and 1−ai or 1−bi when
they should be zero.) The polynomial determining whether the 2k affected variables
are correct is the sum of these polynomials over all sequences a1, . . . , ak.

The resulting polynomial is the polynomial sum of a polynomial product of poly-
nomials of size O(1), and is thus easy to evaluate in P over the field Zp as long as
p has only polynomially many bits. Note for future reference that this construction
never multiplied a variable by itself, so we can be assured that PATH0 is a multilinear
polynomial. ut

We now have to define the polynomials PATHi for i > 0. So that these will have
the correct values on boolean inputs, we must use an inductive definition matching
the inductive definition of the predicates PATHi. Since the midpoint of any path
of a given length from α to β is unique, the 2` cases for different γ’s are mutually
exclusive, and we may calculate the OR of the different boolean values by simply
adding them in Zp. The binary AND can be modeled by a product. Note, by the
way, that this product does not ever multiply any variable by itself. The γi’s are
constants, not variables, so we are multiplying a polynomial containing only αi’s by
one containing only βi’s. Here is our arithmetization:

PATHi+1(α, β)↔
∑

γ1=0,1

. . .
∑
γ`=0,1

PATH(α1, . . . , α`, γ1, . . . , γ`)PATH(γ1, . . . , γ`, β1, . . . , β`)

Each polynomial PATHi is multilinear in its 2` variables. However, note that in
general such a polynomial has 22` possible terms, and except for PATH0 we have no

5



convenient representation for such a polynomial or any way to manipulate it with a
poly-time machine. We will have to deal with these polynomials implicitly, through
assertions about them. A typical single assertion is that the value of a particular
PATHi, on particular inputs α and β in Z`

p, is some particular value r ∈ Zp. We now
have to see how the proof can move from the original assertion about PATH` to the
final one about PATH0 while maintaining Bob’s confidence that the truth values of
these assertions are equivalent.

5. Links Between Assertions

Our basic step in the proof is called an ε-link. This is an interactive protocol that
takes an initial assertion by Alice and produces a final assertion, which may depend
on random choices during the protocol. The two key properties of an ε-link are:

• If Alice’s initial assertion is true, her final assertion will be true with probability
1.

• If Alice’s initial assertion is false, either Bob rejects during the protocol or
Alice’s final assertion will be true with probability at most ε.

Our proof will consist of ` rounds, each consisting of `+1 ε-links. Thus by choosing
our ε so that ε(`2 + `) < 1/3, we will limit Bob’s total probability of being fooled
by an initially incorrect assertion by Alice to less than 1/3, and thus we will define
a valid interactive proof. The initial assertion, PATH`(s, t), is true iff x ∈ A. The
final assertion, PATH0(α, β) for some constant sequences α and β in Z`

p that are
determined during the protocol, can be tested in P by our lemma above, and we have
Bob accept iff this final assertion is true. If x 6∈ A, and if none of the events of an
ε-link failing occur, Bob eventually rejects, and this happens with probability at least
2/3.

In any given round we begin with an assertion PATHi+1(α, β) = r and we want
to end with an assertion PATHi(α

′, β′) = s. Our first ` ε-links take us to an assertion
PATHi(α, γ)PATHi(γ, β) = t, where γ is a new sequence of ` constants from Zp. This
process will be described more fully in the final section.

Let’s now look at the single ε-link from the assertion PATHi(α, γ)PATHi(γ, β) = t
to an assertion about a single PATHi value on some α′ and β′. Alice begins the process
(if she is honest) by computing a polynomial

Q(x) = PATHi(α + (γ − α)x, γ + (β − γ)x)

6



and sending its coefficients to Bob. Note that despite the huge number of constants
αi, βi, and γi it contains, Q(x) is a linear polynomial in x over Zp. Also note that
Q(0) is exactly PATHi(α, γ) and that Q(1) is exactly PATHi(γ, β). If Alice is working
with a false assertion, she will send some other linear polynomial of her own choosing.

Bob’s role in the protocol is to first check that Q(0)Q(1) = t, that is, that Q(x)
as sent by Alice is consistent with Alice’s current assertion. If it isn’t, he rejects.
Otherwise, he chooses a random number z uniformly from Zp and makes the new
assertion Q(z), which is equal to PATHi(α+ (γ−α)z, γ+ (β−γ)z). Thus he sets the
new α′ to be α + (γ − α)z and the new β′ to be γ + (β − γ)z. The final assertion is
PATHi(α

′, β′) = s, where s is Q(z) as computed from the polynomial Q(x) supplied
by Alice. If the initial assertion was true, Alice’s best strategy is to give the correct
Q(x), and this final assertion will be true as well. (Note that Alice needs her cleverness
to compute these coefficients!)

What is the chance of error in this protocol, assuming Alice starts with a false
assertion and Bob doesn’t reject during the protocol? Alice must have given a false
Q(x) to Bob, since hers had Q(0)Q(1) = t and the real one, based on the real PATHi

on the given values, didn’t. Two different linear polynomials in one variable over a
field can agree on at most one value of their variable. The only problem for Bob is
if his randomly chosen z happens to be this value, which occurs with probability at
most 1/p. By choice of p, we can make this probability less than ε as desired, since ε
is only an inverse polynomial.

6. Hybrid Polynomials and Links Between Them

To finish the proof, we now have only to explain the series of ` ε-links that take us
from the assertion PATHi+1(α, β) = r to the assertion PATHi(α, γ)PATHi(γ, β). To
do this we define a sequence of hybrid polynomials, each a function of α and β. They
range from

H0(α, β) = PATHi+1(α, β) =
∑

γ1=0,1

. . .
∑
γ`=0,1

PATHi(α, γ)PATHi(γ, β)

through
Hj(α, β) =

∑
γj+1=0,1

. . .
∑
γ`=0,1

PATHi(α, γ)PATHi(γ, β),

where γ1 through γj are replaced by constants chosen during the protocol, to

H` = PATHi(α, γ)PATHi(γ, β)

7



where all the γ variables have been so chosen.

Our ε-links will be from the initial assertion H0(α, β) = r = h0 through inter-
mediate assertions Hj(α, β) = hj to the final assertion H` = h` = t. We need to
establish an ε-link from the general assertion Hj = hj to Hj+1 = hj+1. This will be
by a technique similar to the ε-link in the previous section.

Note that Hj is the sum of two polynomials, Hj+1 with 0 in the role of γj+1 and
Hj+1 with 1 in that role. Again we define a linear polynomial R(x), where R(x) is
Hj+1 with x in the role of γj+1, and the given values for all other constants. If she
is dealing with a true assertion, Alice (with her cleverness) computes R(x) and sends
its coefficients to Bob. Bob checks that R(0) + R(1) = hj and rejects if it isn’t. If it
checks out, Bob chooses a random number γj+1 uniformly from Zp and sets Hj+1 to
have this value for γj+1. He sets hj+1 to be R(γj+1).

Once again Alice is best served by telling the truth if she starts with a true
assertion. Otherwise, she must provide a false polynomial R(x) to Bob (since the
true polynomial will not satisfy R(0) +R(1) = hj) and Bob’s random choice will lead
to a false assertion unless he chooses the one value on which Alice’s linear polynomial
and the real one agree. This again happens with probability at most 1/p < ε.

7. Exercises

1. It is true, of course, that NPSPACE ⊆ IP from the result proved here and
Savitch’s Theorem. What issues arise when we try to carry out the proof above
starting with a nondetermistic poly-space machine M instead of a deterministic
one?

2. Let P (x1, . . . , xn) be a boolean predicate and let p > 2 be a prime. Show that
there exists a unique multilinear polynomial f(y1, . . . , yn) over Zp such that
whenever the yi’s are all taken from the set {0, 1}, f(y1, . . . , yn) = P (y1, . . . , yn).
This is similar but not identical to an exercise in Basic Lecture 10.

3. Prove carefully that a sequence of assertions P0, . . . , Pm, each linked to its suc-
cessor by an ε-link, shows the existence of an mε-link from P0 to Pm.

4. Prove that for any poly-time interactive protocol, there is another such protocol
defining the same language A where in the second protocol, Alice is always
successful in proving that x ∈ A when this is true. (Recall that the definition
in Basic Lecture 13 did not ensure this.)

8



5. Using the techniques of this lecture, give a direct construction of an interactive
proof system for the language COUNT-SAT. This is the set of pairs 〈φ,m〉
where φ is a boolean formula with exactly m satisfying assignments. Show
that this can easily be adapted to give an interactive proof system for SAT
itself. Historically, Shamir’s proof followed directly upon a breakthrough by
Lund-Fortnow-Karloff-Nisan (that COUNT-SAT was in IP) and further work
by Babai and others. The frenzy of electronic communication during the “race”
to the presumed result IP = PSPACE was remarkable, ending only when Shamir
won the race.

9


